THE UNIVERSITY
 of LIVERPOOL

SECTION A

1. Give a criterion for a non-zero $a \in \mathbf{Z} / n \mathbf{Z}$ to be
i) a zero-divisor;
ii) a unit.

Identify the zero-divisors and units in the ring $\mathbf{Z} / 14 \mathbf{Z}$ and find the multiplicative inverse of each unit.
2. In each of the following cases factorise the polynomial $f(x)$ into irreducibles in the ring R.
(i) $R=(\mathbf{Z} / 5 \mathbf{Z})[x], f(x)=x^{3}+2 x+2$;
(ii) $R=\mathbf{Z}[x], f(x)=x^{4}+3 x^{3}+6 x+15$;
(ii) $R=\mathbf{C}[x], f(x)=x^{4}-1$.
(Hint: you may find Eisenstein's criterion helpful in (ii).)
3. Let $p \in \mathbf{Z}$ be prime and $f \in(\mathbf{Z} / p \mathbf{Z})[x]$ be a monic polynomial. Give a necessary and sufficient condition, in terms of the polynomial f, for the quotient ring $(\mathbf{Z} / p \mathbf{Z})[x] /\langle f\rangle$ to be a finite field.

Find a degree 2 polynomial $f \in(\mathbf{Z} / 3 \mathbf{Z})[x]$ satisfying your condition. Deduce that there is a finite field with 9 elements.
4. a) Write down all the points on the line $x+2 y+2=0$ in $(\mathbf{Z} / 3 \mathbf{Z})^{2}$.
b) Write down all the points on the line $2 x+2 y+z=0$ in $\mathbf{P}^{2}(\mathbf{Z} / 3 \mathbf{Z})$.
c) Write down all the lines in $(\mathbf{Z} / 3 \mathbf{Z})^{2}$ which are parallel to $x+2 y+2=0$.
d) Find the point of intersection of the lines $2 x+2 y+z=0$ and $x+y+z=0$ in $\mathbf{P}^{2}(\mathbf{Z} / 3 \mathbf{Z})$.

THE UNIVERSITY of LIVERPOOL

5. Let C be the code in $(\mathbf{Z} / 2 \mathbf{Z})^{7}$ with check matrix

$$
\left(\begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Give the property of this matrix which ensures that the code corrects exactly one error. Determine which of the following words are in C, and, assuming at most one error, correct those which are not.
(i) 1111000 ,
(ii) 1000011 .
6. Find the greatest common divisor $\operatorname{gcd}(\alpha, \beta)$ in $\mathbf{Z}[i]$ of $\alpha=5+2 i$ and $\beta=3+4 i$. Also find Gaussian integers $\gamma, \delta \in \mathbf{Z}[i]$ with

$$
\operatorname{gcd}(\alpha, \beta)=\alpha \gamma+\beta \delta
$$

[10 marks]

SECTION B

7. Let $N: \mathbf{Z}[\sqrt{-3}] \rightarrow \mathbf{N}$ be given by $N(a+b \sqrt{-3})=a^{2}+3 b^{2}$. Show that N is multiplicative i.e. for any two elements $r, s \in \mathbf{Z}[\sqrt{-3}]$ we have

$$
N(r s)=N(r) N(s) .
$$

Show that

1. r is a unit in $\mathbf{Z}[\sqrt{-3}]$ if and only if $N(r)=1$;
2. there are no elements r with $N(r)=2$ in $\mathbf{Z}[\sqrt{-3}]$.

Using these results, or otherwise, show that the elements 2 and $1 \pm \sqrt{-3}$ are irreducible in $\mathbf{Z}[\sqrt{-3}]$. By factorising 4 into irreducibles in $\mathbf{Z}[\sqrt{-3}]$ in two different ways show that 2 is not a prime in $\mathbf{Z}[\sqrt{-3}]$.

THE UNIVERSITY
 of LIVERPOOL

8. a) Show that neither a $2-(11,6,2)$-design, nor a $2-(10,5,1)$-design, exists.
b) Explain carefully why the lines in the projective plane $\mathbf{P}^{2}(\mathbf{Z} / 5 \mathbf{Z})$ form a 2-design in which a block is given by the set of lines passing through a given point. Find the parameters of this design.
[15 marks]
9. Say what is meant by an ideal of a ring R. Decide whether or not each subset S listed below is an ideal in the given ring R. You should give a careful justification of each answer.
(i) $S=\mathbf{Z}, R=\mathbf{Q}$;
(ii) $S=\{5 a+17 b: a, b \in \mathbf{Z}\}, R=\mathbf{Z}$;
(iii) $S=\{\alpha \in \mathbf{Z}[i]:(3+4 i)$ divides $\alpha\}, R=\mathbf{Z}[i]$;
(iv) $S=\{f(x) \in(\mathbf{Z} / 7 \mathbf{Z})[x]: f(4)=0\}, R=(\mathbf{Z} / 7 \mathbf{Z})[x]$.
[15 marks]
10. Let $R=(\mathbf{Z} / 5 \mathbf{Z})[x]$ and let $I \subset R$ be the ideal generated by

$$
f(x)=x^{2}+x+1
$$

Show that f is irreducible.
Write down the number of elements in the quotient ring R / I and the number of elements in $(R / I)^{*}$. State the possible orders of elements in $(R / I)^{*}$. Find the orders of the elements
(i) x,
(ii) $3 x+4$.

Compute the product $x(3 x+4)$ and deduce that $x+2$ has order 24. (Hint: no further computation is necessary.)

THE UNIVERSITY
 of LIVERPOOL

11.a) State a result which describes the factorisation of $x^{32}+x$ into irreducibles in $(\mathbf{Z} / 2 \mathbf{Z})[x]$. Noting that there are precisely 2 irreducible polynomials of degree 1 , namely x and $x+1$, deduce that there are precisely 6 irreducible polynomials of degree 5 in $(\mathbf{Z} / 2 \mathbf{Z})[x]$. Now
(i) explain why $f(x)=x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+1 \in(\mathbf{Z} / 2 \mathbf{Z})[x]$ is not irreducible if $a+b+c+d$ is even;
(ii) compute the products $\left(x^{2}+x+1\right)\left(x^{3}+x+1\right)$ and $\left(x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right)$ in $(\mathbf{Z} / 2 \mathbf{Z})[x]$.

Finally, write down a list of the irreducible degree 5 polynomials in $(\mathbf{Z} / 2 \mathbf{Z})[x]$. (Hint: start by writing down a list of degree 5 polynomials in $(\mathbf{Z} / 2 \mathbf{Z})[x]$ which have neither x nor $x+1$ as a factor. Then use (ii) above to eliminate two polynomials which factorise from this list so that there are only 6 remaining.)

