

SECTION A

- 1. Give a criterion for a non-zero $a \in \mathbf{Z}/n\mathbf{Z}$ to be
- i) a zero-divisor;
- ii) a unit.

Identify the zero-divisors and units in the ring $\mathbf{Z}/14\mathbf{Z}$ and find the multiplicative inverse of each unit.

[9 marks]

2. In each of the following cases factorise the polynomial f(x) into irreducibles in the ring R.

(i)
$$R = (\mathbf{Z}/5\mathbf{Z})[x], f(x) = x^3 + 2x + 2;$$

(ii)
$$R = \mathbf{Z}[x], f(x) = x^4 + 3x^3 + 6x + 15;$$

(ii)
$$R = \mathbf{C}[x], f(x) = x^4 - 1.$$

(Hint: you may find Eisenstein's criterion helpful in (ii).) [9 marks]

3. Let $p \in \mathbf{Z}$ be prime and $f \in (\mathbf{Z}/p\mathbf{Z})[x]$ be a monic polynomial. Give a necessary and sufficient condition, in terms of the polynomial f, for the quotient ring $(\mathbf{Z}/p\mathbf{Z})[x]/\langle f \rangle$ to be a finite field.

Find a degree 2 polynomial $f \in (\mathbb{Z}/3\mathbb{Z})[x]$ satisfying your condition. Deduce that there is a finite field with 9 elements.

[9 marks]

4. a) Write down all the points on the line x + 2y + 2 = 0 in $(\mathbb{Z}/3\mathbb{Z})^2$.

b) Write down all the points on the line 2x + 2y + z = 0 in $\mathbf{P}^2(\mathbf{Z}/3\mathbf{Z})$.

c) Write down all the lines in $(\mathbf{Z}/3\mathbf{Z})^2$ which are parallel to x+2y+2=0.

d) Find the point of intersection of the lines 2x+2y+z = 0 and x+y+z = 0in $\mathbf{P}^2(\mathbf{Z}/3\mathbf{Z})$.

[9 marks]

CONTINUED

5. Let C be the code in $(\mathbf{Z}/2\mathbf{Z})^7$ with check matrix

(1	1	0	0	1	1	0 \
	0	1	1	1	1	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
							1 /

Give the property of this matrix which ensures that the code corrects *exactly* one error. Determine which of the following words are in C, and, assuming at most one error, correct those which are not.

- (i) 1111000,
- (ii) 1000011.

[9 marks]

6. Find the greatest common divisor $gcd(\alpha, \beta)$ in $\mathbf{Z}[i]$ of $\alpha = 5 + 2i$ and $\beta = 3 + 4i$. Also find Gaussian integers $\gamma, \delta \in \mathbf{Z}[i]$ with

$$gcd(\alpha, \beta) = \alpha \gamma + \beta \delta.$$

[10 marks]

SECTION B

7. Let $N : \mathbb{Z}[\sqrt{-3}] \to \mathbb{N}$ be given by $N(a + b\sqrt{-3}) = a^2 + 3b^2$. Show that N is multiplicative i.e. for any two elements $r, s \in \mathbb{Z}[\sqrt{-3}]$ we have

$$N(rs) = N(r)N(s).$$

Show that

- 1. r is a unit in $\mathbb{Z}[\sqrt{-3}]$ if and only if N(r) = 1;
- 2. there are no elements r with N(r) = 2 in $\mathbb{Z}[\sqrt{-3}]$.

Using these results, or otherwise, show that the elements 2 and $1 \pm \sqrt{-3}$ are irreducible in $\mathbb{Z}[\sqrt{-3}]$. By factorising 4 into irreducibles in $\mathbb{Z}[\sqrt{-3}]$ in two different ways show that 2 is not a prime in $\mathbb{Z}[\sqrt{-3}]$.

[15 marks]

CONTINUED

8. a) Show that neither a 2-(11, 6, 2)-design, nor a 2-(10, 5, 1)-design, exists.

b) Explain carefully why the lines in the projective plane $\mathbf{P}^2(\mathbf{Z}/5\mathbf{Z})$ form a 2-design in which a block is given by the set of lines passing through a given point. Find the parameters of this design.

[15 marks]

9. Say what is meant by an *ideal* of a ring R. Decide whether or not each subset S listed below is an ideal in the given ring R. You should give a careful justification of each answer.

- (i) $S = \mathbf{Z}, R = \mathbf{Q};$
- (ii) $S = \{5a + 17b : a, b \in \mathbf{Z}\}, R = \mathbf{Z};$
- (iii) $S = \{ \alpha \in \mathbf{Z}[i] : (3+4i) \text{ divides } \alpha \}, R = \mathbf{Z}[i];$
- (iv) $S = \{f(x) \in (\mathbb{Z}/7\mathbb{Z})[x] : f(4) = 0\}, R = (\mathbb{Z}/7\mathbb{Z})[x].$

[15 marks]

10. Let $R = (\mathbb{Z}/5\mathbb{Z})[x]$ and let $I \subset R$ be the ideal generated by

$$f(x) = x^2 + x + 1.$$

Show that f is irreducible.

Write down the number of elements in the quotient ring R/I and the number of elements in $(R/I)^*$. State the possible orders of elements in $(R/I)^*$. Find the orders of the elements

- (i) x,
- (ii) 3x + 4.

Compute the product x(3x + 4) and deduce that x + 2 has order 24. (Hint: no further computation is necessary.)

[15 marks]

CONTINUED

THE UNIVERSITY of LIVERPOOL

11.a) State a result which describes the factorisation of $x^{32} + x$ into irreducibles in $(\mathbb{Z}/2\mathbb{Z})[x]$. Noting that there are precisely 2 irreducible polynomials of degree 1, namely x and x + 1, deduce that there are precisely 6 irreducible polynomials of degree 5 in $(\mathbb{Z}/2\mathbb{Z})[x]$. Now

- (i) explain why $f(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + 1 \in (\mathbb{Z}/2\mathbb{Z})[x]$ is not irreducible if a + b + c + d is even;
- (ii) compute the products $(x^2 + x + 1)(x^3 + x + 1)$ and $(x^2 + x + 1)(x^3 + x^2 + 1)$ in $(\mathbb{Z}/2\mathbb{Z})[x]$.

Finally, write down a list of the irreducible degree 5 polynomials in $(\mathbf{Z}/2\mathbf{Z})[x]$. (Hint: start by writing down a list of degree 5 polynomials in $(\mathbf{Z}/2\mathbf{Z})[x]$ which have neither x nor x + 1 as a factor. Then use (ii) above to eliminate two polynomials which factorise from this list so that there are only 6 remaining.)

[15 marks]