
SECTION A

1. An element r ∈ R is a unit if there exists s ∈ R with rs = 1.

(i) (−1)2 = 1 so −1 ∈ Z is a unit.

(ii) 5× 3 = 1 so 5 ∈ Z/7Z is a unit.

(iii) 5× 5 = 1 so 5 ∈ Z/8Z is a unit.

(iv) x2 + 1 is not a unit in Z[x] because the product of x2 + 1 with another
polynomial is either 0 or a polynomial of degree ≥ 2 and in particular is
therefore not 1.

(v) 1 + i is not a unit in Z[i] because |1 + i|2 = 2 and so

|(1 + i)(a + bi)|2 = 2(a2 + b2) 6= 1

for any a, b ∈ Z.

2. A non-zero element r ∈ R is irreducible if we cannot write r = st for two
non-units s, t ∈ R.

(i) f(x) = x3 + 2x2 + x + 2 is not irreducible because f(2) = 0 and we have
f(x) = (x− 2)(x2 + 4x− 1).

(ii) f(x) = x4 + x − 1 has no linear factors because it has no roots in Z:
f(0), f(±1) 6= 0 and if |n| > 1 then f(n) > 12. Since the coefficient of x4 is
1 and the constant term is −1 the only possible factorisation into quadratics
is of the form

x4 + x− 1 = (x2 + ax + 1)(x2 + bx− 1).

Comparing coefficients we find that

a + b = 0, ab = 0, b− a = 1.

There are no solutions to these equations and so no possible factorisation;
f(x) is irreducible in Z[x].

(iii) If f(x) = x4 + x − 1 then f(0) = −1 and f(1) = 1 so there is a real root
between 0 and 1 (by the intermediate value theorem). Hence f(x) is not
irreducible in R[x].
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3. The elements of (Z/2Z)[x]/〈x2 + x + 1〉 are 0, 1, x, 1 + x (in standard
form).

The multiplication table is

× 0 1 x 1 + x
0 0 0 0 0
1 0 1 x 1 + x
x 0 x 1 + x 1
1 + x 0 1 + x 1 x

R is a field because each non-zero element has a multiplicative inverse — there
is a 1 in each non-zero row and column.

(It is also acceptable for them to note that x2 +x+1 is irreducible and quote
the result which says that the quotient by an ideal generated by an irreducible is
a field.)

4. We use the Euclidean algorithm.

5

1 + 3i
= −i +

(
1

2
− i

2

)
so that 5 = −i(1 + 3i) + (2 + i) with |2 + i|2 = 5 < 10 = |1 + 3i|2.

Then
1 + 3i

2 + i
= 1 + i

so that the greatest common divisor is the last non-zero remainder i.e.

g = 2 + i.

We have 5
2+i

= 2− i so that a = 2− i and 1+3i
2+i

= 1 + i so that b = 1 + i.

Finally g = 2 + i = 5 + i(1 + 3i) so c = 1 and d = i.

5. A t-(v, k, r)-design consists of a set X of size v together with a collection
B of subsets of X (the blocks), each of size k, with the property that each subset
of r elements of X occurs in precisely t blocks.

a) The subsets of size 2 in a set of size 5 form a 1-(5, 2, 4)-design because
each element occurs in exactly 4 subsets of size 2 (there are 4 other elements with
which it can be paired).

b) The lines in the 7 point projective plane P2(Z/2Z) form a 2-(7, 3, 1)-
design: there are 3 points on each line and each pair of points lies on a unique
line.

Paper Code MATH 247 Page 3 of 9 CONTINUED



6. a) The length of the code is the number of columns of the check
matrix M , in this case 7. The dimension of the code is the length minus the
number of linearly independent rows of the check matrix, in this case 7− 3 = 4.
Since no column is identically zero and no two are the same the weight is ≥ 3.

The number of words in the code is 24 = 16 i.e. the number of elements in a
linear subspace of (Z/2Z)7 of dimension 4. Since the weight is ≥ 3 at least one
error can be corrected.

b)

(i) Since M(1110001)T = (000)T the word 1110001 is in C.

(ii) Since M(1101110)T = (110)T the word 1110001 is not in C. Since (110)T

is the fourth column of M the fourth entry of the word is incorrect and so
the corrected word is

1100110

(which is in the code).
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SECTION B

7. A ring homomorphism from R to S is a map ϕ : R → S such that

• ϕ(r − r′) = ϕ(r)− ϕ(r′) ∀r, r′ ∈ R;

• ϕ(rr′) = ϕ(r)ϕ(r′) ∀r, r′ ∈ R;

• ϕ(1) = 1.

(Note the last condition; this was the course’s convention since it dealt with rings
with multiplicative identity.)

(i) ϕ : Z → Z/6Z : m 7→ m mod 6 is a ring homomorphism (standard check).
The kernel is 6Z.

(ii) ϕ : Z → Z : m 7→ m2 is not a ring homomorphism because, for example,
(1 + 1)2 = 4 6= 12 + 12.

(iii) ϕ : Q[x] → Q : p(x) 7→ p(3) is a ring homomorphism (standard check). It
is also acceptable for them to quote the result that evaluation maps from
polynomial rings are always homomorphisms.

The kernel is the subset of polynomials with 3 as a root or, equivalently,
the polynomials with x− 3 as a factor. (Either formulation is acceptable.)

(iv) ϕ : (Z/2Z)[x] → (Z/2Z)[x] : p(x) 7→ p(x)2 is a ring homomorphism. Sup-
pose p(x) = a0 + a1x + . . . anx

n. Then

p(x)2 = (a2
0 + a2

1x
2 + . . . + a2

nx
2n) + 2× (cross terms) = p(x2)

because a2 = a in Z/2Z. It easily follows that ϕ is a ring homomorphism.

The kernel is {0}.
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8. a) Elements of the quotient ring correspond to polynomials in R
of degree < 4 so there are 24 = 16 of them. Since f(x) is irreducible (R/I)∗ =
R/I−{0} and so has 15 elements. The possible orders of elements are the divisors
of 15 i.e. 1, 3, 5 and 15.

b) Clearly x + 1 doesn’t have order 1 and

(x + 1)5 = (x + 1)(x + 1)4 = (x + 1)(x4 + 1) = (x + 1)x3 = 1

so x + 1 has order 5 in (R/I)∗.

Clearly x3 + x doesn’t have order 1 and

(x3 + x)2 = x2(x4 + 1) = x5 = x(x3 + 1) = x3 + x + 1

so

(x3 + x)3 = (x3 + x)(x3 + x + 1) = x6 + x3 + x2 + x = x5 + x3 + x = x4 + x3 = 1.

Hence x3 + x has order 3 in (R/I)∗.

c) We have (x + 1)(x3 + x) = x4 + x3 + x2 + x = x2 + x + 1 in standard
form. Clearly x2 + x + 1 doesn’t have order 1. It can’t have order 3 because

(x + 1)3(x3 + x)3 = (x + 1)3 6= 1

nor can it have order 5 because

(x + 1)5(x3 + x)5 = (x3 + x)5 6= 1.

The only remaining possibility is that x2 + x + 1 has order 15.
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9. a) Clearly
√

2 is a root of x2−2 which is irreducible in Z[x] because
2 is not a perfect square. Hence, by Gauss’s lemma, x2 − 2 is irreducible in Q[x]
and so is the minimal polynomial of

√
2.

Let α =
√

2 +
√

7. Then α2 = 9 + 2
√

14 so

(α2 − 9)2 = 56 or, equivalently, α4 − 18α2 + 25 = 0.

We have α(α2 − 9) = (
√

2 +
√

7)2
√

14 = 4
√

7 + 14
√

2. Hence

α(α2 − 9)− 4α = 10
√

2

or, equivalently,
√

2 =
1

10

(
α(α2 − 9)− 4α

)
∈ Q[α].

b)

(i) Since the minimal polynomial of
√

2 has degree 2 we have [Q[
√

2] : Q] = 2.

(ii) Since
√

2 ∈ Q[α] we deduce that so is
√

7 = α −
√

2. We are told that√
7 6∈ Q[

√
2] so that [Q[α] : Q[

√
2]] ≥ 2. Since

√
7 satisfies a quadratic in

Q[
√

2][x] we must have [Q[α] : Q[
√

2]] = 2.

(iii) By the above [Q[α] : Q] = [Q[α] : Q[
√

2]]× [Q[
√

2] : Q] = 2× 2 = 4.
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10. a) There are four sets of parallel lines in Z2
3 namely,

x + c = 0, y + c = 0, x + y + c = 0, x + 2y + c = 0

where c = 0, 1 or 2. The tasters correspond to these different values of c. The
ice-creams correspond to the 9 points in Z2

3. The schedule is then as follows,
where 1 indicates that an ice-cream is tested by the taster, and 0 indicates that
it is not.

(0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2)
Session 1 . . . . . . . . .

x = 0 1 0 0 1 0 0 1 0 0
x + 1 = 0 0 0 1 0 0 1 0 0 1
x + 2 = 0 0 1 0 0 1 0 0 1 0
Session 2 . . . . . . . . .

y = 0 1 1 1 0 0 0 0 0 0
y + 1 = 0 0 0 0 0 0 0 1 1 1
y + 2 = 0 0 0 0 1 1 1 0 0 0
Session 3 . . . . . . . . .
x + y = 0 1 0 0 0 0 1 0 1 0

x + y + 1 = 0 0 0 1 0 1 0 1 0 0
x + y + 2 = 0 0 1 0 1 0 0 0 0 1

Session 4 . . . . . . . . .
x + 2y = 0 1 0 0 0 1 0 0 0 1

x + 2y + 1 = 0 0 0 1 1 0 0 0 1 0
x + 2y + 2 = 0 0 1 0 0 0 1 1 0 0

b) There is a field F with 4 = 22 elements. The plane F2 has 42 = 16
elements and there are (42 − 1)/(4− 1) = 5 sets of parallel lines

{ax + by + c = 0 : c ∈ F}

for different choices of (a, b) 6= (0, 0). This is obtained by counting the number
of pairs (a, b) ∈ F2 with (a, b) 6= (0, 0) up to a non-zero multiple, that is, if we
count (a, b) then we do not count λ(a, b) for λ 6= 1. As before, we would take the
tasters corresponding to the values of c, the sessions corresponding to the sets of
parallel lines, and the ice-creams corresponding to the points in F2.
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11. a) The irreducible degree 2 polynomial in (Z/2Z)[x] is x2 +x+1,
and the three irreducible degree 4 polynomials in (Z/2Z)[x] are

x4 + x3 + x2 + x + 1, x4 + x + 1 and x4 + x3 + 1.

The theory of factorisations of xpn − x in (Z/pZ)[x] tells us that the factors
of x16 + x in (Z/2Z)[x] are the irreducible polynomials in (Z/2Z)[x] of degrees
dividing 16, and that each occurs once in the factorisation. Hence

x15 + 1 = (x + 1)(x2 + x + 1)(x4 + x3 + x2 + x + 1)(x4 + x + 1)(x4 + x3 + 1).

b) If g(x) = (x + 1)(x4 + x + 1) then g(x)h(x) = x15 + 1 where

h(x) = (x2 + x + 1)(x4 + x3 + x2 + x + 1)(x4 + x3 + 1)

= x10 + x9 + x8 + x6 + x5 + x2 + 1.

The first row of the check matrix is the coefficients of h(x) in descending order
starting with that of the highest power x10 and followed by 4 zeros (to make 15
entries). The next row is the cyclic shift of this right by one place and so on. So
the matrix is 

1 1 1 0 1 1 0 0 1 0 1 0 0 0 0
0 1 1 1 0 1 1 0 0 1 0 1 0 0 0
0 0 1 1 1 0 1 1 0 0 1 0 1 0 0
0 0 0 1 1 1 0 1 1 0 0 1 0 1 0
0 0 0 0 1 1 1 0 1 1 0 0 1 0 1



There are no zero columns and no two columns are the same so the code has
weight ≥ 3.

c) The number of cyclic codes of length 15 with dimension 7 corresponds
to the number of factors of x15+1 in (Z/2Z)[x] of degree 8. Such a factor consists
of the product of two of the three distinct degree 4 factors. So there are 3 such
codes.

The number of cyclic codes of length 15 with dimension 8 corresponds to the
number of factors of x15 + 1 in (Z/2Z)[x] of degree 7. Such a factor consists of
the product of the degree 1 and 2 factors and one of the three distinct degree 4
factors. So there are again 3 such codes.
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