M244 2005 Solutions

Section A

1. To say that {vi,ve,...,v,} spans V means that every element in V' can
be written as a linear combination

Av1 + Agvg + -+ A Up.

[1 mark]

Now, to show that W is a subspace of V, first note that the zero vector

(0,0,0) is in W because the sum of its coordinates is 04+0+0=0. If now

(z1,y1,21) and (z2,y2, 29) are in W, then by definition z1 + y; + 21 = 0 and
also z9 + y9 + 29 = 0. So since

(z1,91,21) + (%2, Y2, 22) = (21 + T2, Y1 + Y2, 21 + 22),
we add the three coordinates of this vector to obtain
(1 +z2)+, (Y1 +y2) + (21 +22) = (w1 +y1+21) + (T2 +y2a+22) =0+0=0
Finally, if (z,y, z) is in W (so that x +y + 2+ 0) and A is any real number,
then A(z,y,2) = (Az, Ay, A\z). Since
A+ Ay, +Az =Nz +y+2)=X-0=0
We have therefore shown that W is a subspace of V. [3 marks]

When we take the vectors (1,0,—1),(1,2,1) and (2, -2, —4), it is clear
that the first two are independent, so we investigate what happens if we
write

(2,-2,—-4) = X\(1,0,-1) + p(1,2,1).

This leads to three equations: 2 = A+, —2 = 2y and —4 = —X + u.

We see that 4 = —1 and so A = 3. Since these equations have non-zero

solutions, the third vector depends on the first two so U has basis (1,0, —1)

and (1,2,1) and dimension 2. [2 marks]
Now

W = {(z,9,2):z+y+2z=0}
= {(z,9,2) 12=—y— =}
= {(z,y,~y —2)}
= {z(1,0,-1) +y(0,1,-1)}



Since (1,0,—1) and (0,1, 1) are clearly linearly independent, they are a basis
for W so W also has dimension 2. [2 marks]

Now if (z,y,2) isin UNW, then 2 = —y — z and so (z,y, —y — ) is a
linear combination of (1,0, —1) and ((1,2,1):

(z,y,—y —z) = A(1,0,—-1) + u(1,2,1)

this gives ¢ = A+ pu, y = 2p and —y —x = —A + p. Thus 4 = y/2 and
A =z — y/2 (from the first two equations). The third then gives

—y—z=-A+p=—-z+y/2+y/2=—-z+y

it follows that y = 0, so vectors of the form (z,0, —z) are in U NV showing
that this space has dimension 1. Since U NV # {0}, it follows that R? is
not the direct sum of U and V. [2 marks]

2. A group is a set G with a law of composition satisfying the following
axioms:

(G1) for any =,y € G, zy is in G;

(G2) for any z,y,z in G, z(yz) = (zy)z;

(G3) there is an element e in G such that for all g € G, ge = g = eg;

(G4) givlen an element g € G, there is an element g~! of G with gg™! =1 =
g g

Given two groups (G, o) and (H,x), a map f is a homomorphism if

flgoh) = fl(g)xf(h)

for all elements g, h of G

The kernel of f is the set of elements g in G such that f(g) = eq.

The image of f is the set of those elements in A which are images of
elements of G under f. [6 marks]

To show that ¢ is a homomorphism consider two matrices 4, B in G,
then

wan=o{(3 )5 ) -+((3 8 )) o=

Since ¢(A) = a1 and ¢(B) = a2 and the group operation in H is multipli-
cation, we see that ¢ is a homomorphism.



[2 marks]
The kernel of ¢ is the set of matrices in G with ‘a = 1’, so

kerqﬁ:{((l) 2>:beR\{0}}.

The image of ¢ is the whole of H since any non-zero real number could occur
as the appropriate entry of an element A of G. [2 marks]

3. To show that L is linear, we check
a1 by as by a1 +as by + by
L =1L
(<Cl d1>+<62 do >) (< c1t+ec di+ds >)

a1+a2+d1+d2 b1+b2
c1+co a1 +az+di+dy )’

On the other hand

_ a1 +az+di+da by +bo
c1+c a1 +az+di+de

so LM1 holds. Similar checks hold for LM2:

(e h)=a(er L) -
AMa+d) b B a b
()\c Aa +d) ) N LO\( c d >)

[5 marks]
To compute the rank and nullity of L it is perhaps easiest to work out
the matrix of L with respect to the standard basis. This is

0

_ o O
OO~ O
_ o O =

0
1
0



If now a +d =0 = b= ¢, we see that a = —d so the kernel has dimension 1
(nullity 1). The image of L is spanned by the columns of M so is spanned
by (1,0,0,1),(0,1,0,0) and (0,0,1,0), so has dimension 3 (rank 3).

[4 marks]

4. We are given that f((x1,z2), (y1,v2)) = 1y1 + 221y2 + 22y2. Thus

£((2,2),(2,2) = 2:-242-2.242-2=16
f((2,2),(0,1)) = 2-04+2-2-14+2-1=6
£((0,1),(2,2)) = 0-2+42-0-2+1-2=2
£((0,1),(0,1)) = 0-0+2-0-1+1-1=1
. - 16 6
so the required matrix is A = 9 1 [3 marks]
Similarly for the basis (1,1), (0, 1)
£((1,1),(1,1)) 1-142-1-141-1=4
F((1,1),(0,1)) = 1-042-1-141-1=3
F(0,1),(1,1) = 0:-14+2-0-1+1-1=
£((0,1),(0,1)) = 0:-0+2-0-1+1-1=1
. . . . 4 3
so, in this case, the required matrix is B = ( 11 ) . [3 marks]
(12 0
AlsoP—( 0 1>so,
.o (12 0\[(16 6)[1/2 0
PrAP = ( 01 2 1 01
(12 0\(8 6
B 01 11
(43
B 11
= B
as required. [3 marks]



5. The eigenvalues of A are the roots of the characteristic polynomial:

A—1 -1 -1
det (\] —A) = det 0 A—2 4
0 0 A—-1
= A-1D(A=-2)A-1)4+0)—-(-1)-0+(=1)-0
= (A=-1)>%1-2).
[3 marks]
It follows that the eigenvalues are A = 2 and A =1 (twice).
The eigenvectors when A\ = 2 are given by Au = 2u so that
111 x 2z
0 2 4 y | =1 2y
0 01 z 2z
This leads to three equations:
c+y+z=2zx 2y+4z=2y; =z=2z.
T
It follows that z = 0, and y = z so a typical eigenvector is v1 = | =
0
[2 marks]

The eigenvectors when A = 1 are given by Au = lu so that

1 11 x T
0 2 4 y | =1 v
0 0 1 z z

This leads to the equations z + y+ 2z = z, 2y + 42 = y and z = z. Thus
y+2z=0and y=—4z so y = z = 0. If follows that a typical eigenvector
for A =1is (z,0,0)
[2 marks]
We now see that any set of three eigenvectors must contain at least
two eigenvectors corresponding to the same eigenvector. Since the set of
eigenvectors corresponding to the same eigenvalue is one diminsional, no set
of three eigenvectors can be linearly independent.
[2 marks]

6. To show that v1,v9 and vs are a basis, it is sufficient to show that they
are linearly independent, so we consider the equations

AL, 1,1) + (1, -1,2) +v(0,1,1) = (0,0,0).



We obtain three equations in the unknowns
A4+pu=0 A—pu+v=0 I+2u+v=0.

The first gives A = —u = 0, so the others become v = —2X and v = A
These clearly imply that A = 4 = v = 0, so the given vectors are linearly
independent and therefore form a basis.

[2 marks |
Now if ¢1, ¢2 and ¢3 are the dual basis for v1,v2 and vz we have
$1(v1) =1;  ¢1(v2) =0  ¢1(v3) =0
$1(ve) =0;  ¢a(v2) =1  ¢a(v3) =0
b1(v3) =0;  ¢3(v2) =0  ¢3(v3) =1
[1 marks]

Now if ¢1(z,y,2) = a1z + b1y + ¢12, we obtain a1 + by +¢1 = 1, a3 —
b1 + 2¢1 = 0 and b; + ¢1 = 0. We now solve these equations for a1, b1, ¢ to
get by = —c1 (so that a3 =1 and 1 — by — 2b; = 0). We can obtain a; = 1,
by =1/3 and ¢; = —1/3, so that ¢1(z,y,z) =z +y/3 — z/3.

Similar calculations are carried out to determine ¢o: we solve

ag+by+co=0, as—by+2co=1, and by + co = 0.

This time the solution is ag = 0,b = —1/3 and ¢ = 1/3 so that ¢9 is

given by ¢2(x7ya Z) = _y/3 + Z/3
For ¢3, we solve

a3+bs+c3=0, a3—by3+2cg=0andb3+c3=1

These give a3 = —1,b3 = 1/3 and c¢3 = 2/3 so that ¢3(z,y,z) = —x +
y/3+ 22/3. [6 marks]



Section B

7. The matrices A, B are respectively

0 001 10 0 O
0 010 01 0 O
A= 01 00|’ B= 00 -1 O
1000 00 0 -1
[2 marks]
The eigenvalues of A are the roots of det(AI — A) or
A0 0 -1
0 x -1 0
det) g 1 X o
-1 0 0 A
A -1 0o x -1
= Adet| -1 A + det 0 -1 A
0 O -1 0 O

2

0
0
A
= A det (_i _/1\>—1det <_’I j)
= XXM -1D)-N-1D=N-1)"=0X-12AN+1)?

Thus A has eigenvalues 1(repeated twice) and —1 (repeated twice).

[6 marks]
When A = —1 the eigenvectors are given by
00 01 T -z
0010 y | | —y
0100 z | | -z
1000 t —t
sor = —t and y = —z , so an eigenvector is 7 + sz — sz® — r. Two obvious
choices give us 1 — z® and z — 22 as eigenvalues. [2 marks]
When A =1 an eigenvector is given by
00 01 T T
0010 y | |y
0100 z | | =
1000 t t



so we see £ = t and y = z (no information), thus a typical eigenvector is
a(l+x3) +b(x + 2?), giving 1 + 23 and x + x? as obvious choices. [2 marks]
Thus the diagonal form of A is

10 0 O
01 0 O
00 -1 0
00 0 -1

[2 marks]

We now see that the second basis in the first part of the question, is

actually a basis of eigenvectors, so when we change to this basis, we obtain
D which is why B = D.

[2 marks].

8. The rank of f is the dimension of im f and the nullity of f is the dimension
of its kernel. [2 marks]
The matrix of the given linear map is

1

N = =
S =N =
N = =

1
0
00 0

To find a basis for the image of f, we need to find a basis for the space
spanned by the columns of A: the vectors

(1’ ]‘72’0); (17 15070); (1’27 ]"O); and (17 ]"270)

Clearly the last equals the first, so the only question is whether the third is
a linear combination of the first 2. Consider

(17 2’ ]‘7 O) = A(]" ]‘7 2’ 0) + I'L(]" ]‘7 0’ 0)

This gives 1 = A+ u, 2 = A+ g and 0 = 0. Clearly the first two are

inconsistent, so they have no solution, so the third vector is not a linear

combination of the first two. We deduce that (1,1,2,0), (1,1,0,0) and

(1,2,1,0) are a basis for the image and so the rank of f is 3. [6 marks]
The kernel is the solution set for the equations Au = 0, giving

c+y+2+t=0; z+y+224+t=0; 2z+2+4+2t=0.

It is clear that if we subtract the first two equations, we obtain z = 0. Re-
writing then gives z + y + ¢t = 0 (twice) and 2z + 2t = 0. Thus t = —=z,



t = —2z and y = 0 so the solution set consists of vectors of the form
(2,0,0,—z) = z(1,0,0,—1). This is clearly a one dimensional space spanned
by the vector (1,0,0,1) so the nullity is 1.
[6 marks]
To decide whether R* is a direct sum of the kernel and the image of f
or not, we try to find a u with f(u) =0 and u = f(v). Thus u of the form
z(1,0,0,—1) and also u is in the image of f so

U= A(]', ]" 27 O) + /’I'(17 ]" 07 O) + I/(]" 27 ]" O)

Since all vectors in the image of f have zero fourth coordinate,the only
vector common to ker f and im f is that with £ = 0 so the intersection of
ker f and im f is {0}. Thus the sum of ker f and im f has dimension 4 and
so must equal R*. It follows that R* is the direct sum of ker f and im f.
[3 marks]

9. The given form is q(z,y, z) = 22 + 62z — 2y? + 22 so its matrix is

1 0 3

A=10 -2 0

3 01

[1 mark]
The eigenvalues of A are the zeros of the polynomial

A—1 -0 -3
= det 0 X+2 0
-3 0 2x-1

B A+2 0 0 A+2
= (A—l)det( 0 )\_1>—3det(_3 0)

A=1DA+2)A=1) =33\ +2)
A+2)(A—1)2 - 91 — 18
= A+2((r-1)*-9)
A +2) (A2 —2x—8)
( (A=4)(A+2).

It follows that the eigenvalues are —2 (twice) and 4. [3 marks]
The eigenvectors for eigenvalue —2 are given by

A+2)

1 0 3 T —2x
0 -2 0 y | =1 -2y
3 01 z —2z



so we obtain the equations z + 3z = —2z (or 3z +3z =0), —2y = —2y (so y

is unconstrained) and 3z + z = —2z (also giving z + y = 0). Thus a typical

eigenvector is (z,y, —z). [3 marks]
The eigenvectors for eigenvalue 4 are given by

1 0 3 T 4
0 -2 0 y | = 4y
3 01 z 4z

This time the equations are z + 3z = 4z (or z = z), —2y = 4y ( giving
y=20) and 3z + 2z = 4z (so x = z). A typical eigenvector is of the form
(z,0,z). [3 marks]

The required orthogonal matrix P is obtained by putting orthgonormal
eigenvectors into columns so

1 1
/2 0 72 —2 00
P = 01 0 and D = 0 -2 0
-1 1
7 7 0 0 4
[3 marks]
The surface becomes 4X? —2Y?2 — 272 = 25, a hyperboloid of two sheets
with circular cross-section. [2 marks]

10 (i) To show e is unique, suppose that G had two identities e; and e then
e1 = g = gep and esg = g = geo for all g in G. Now consider the element
eres. Since e; is a left identity, this is ey, and since ey is a right identity this
is e1 so e; = es. [2 marks]

(ii) Suppose that aob = g = aoc for some elements a, b, ¢ in G. Multiply
the equation aob = aoc on both sides by the inverse of a to get a~!o(aocb) =
a 'o(aoc). Now use associativity to get (a1 oa)ob = (a ' oa)oc. Since
a~ ! is the inverse for a, ! oa = e, so we obtain eo b = e o c. The result
now follows since e is an identity element. [2 marks]

Now if an element g is repeated in the same row of a table, then g will
be of the form g o b and also of the form a o ¢ for some a,b, and ¢, so the

above argument shows that b = c. [1 mark]
For columns, if a o b = c o b, we multiply on right by b~! and again use
associativity, inverse and identity to deduce that a = c. [2 marks]

(iii) Inspecting the given partial table, we see that fa = a which can
only happen in a group when f is the idenity element. This also means that
b is the inverse of ¢ (and so c is the inverse of b). Similarly, since d is the

10



inverse of a, a is the inverse of d. We can now fill in more of the partial
table:

ola b ¢ d f
alb ¢ 7 f a
b a b
c f c
d|f d
fla b ¢ d f

The entry marked ? cannot be a,b,c or f (already in row) so must be d.
Next consider the second entry in the column headed by b. This cannot be
¢, f or b (all in this column) or a,b, or f (already in row). This entry must
also equal d. This gives

ocla b ¢ d f
alb ¢ d f a
b d f a b
c f c
d|f d
fla b ¢ d f

The remaining entry in the second row must now be ¢, that in the first
column second row must then be d and the missing entry in the second
column must be a. We now have

ola b ¢ d f
alb ¢ d f a
blec d f a b
cld f ?7 ¢
dif a

fla b ¢ d f

The entry at 7 cannot be a, f or d (already in column) nor d, f, or ¢ (already
in row), so must be b the missing entry is that row is then a, that from the
same column is ¢ and the final entry b to complete the table as

ocla b ¢ d f
alb ¢ d f a
blc d f a b
cld f a b c
dlf a b ¢ d
fla b ¢ d f

[8 marks]

11



