THE UNIVERSITY
of LIVERPOOL

SOLUTIONS FOR MATH244 (SEPTEMBER 2006)

Section A

1.

(a) The span of $\left\{v_{1}, \ldots, v_{k}\right\}$ is the set of all linear combinations of v_{1}, \ldots, v_{k} :

$$
\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)=\left\{\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}: \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{K}\right\} .
$$

(It is acceptable if students just cover the case of a real vector space, writing \mathbb{R} instead of \mathbb{K}.)
[2 marks]. Standard definition from lectures.
(b) First method: First put u_{1}, u_{2}, u_{3} as the rows of a matrix, and use row operations to reduce to echelon form. Solution:

$$
\left(\begin{array}{ccc}
3 & 0 & 1 \\
1 & -2 & 1 \\
1 & 4 & -1
\end{array}\right) \longrightarrow \ldots \longrightarrow\left(\begin{array}{ccc}
3 & 0 & 1 \\
0 & 3 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

Thus $(3,0,1),(0,3,-1)$ is a basis of U, and the dimension is 2 .
Second method: Find a nontrivial solution to the equation $\lambda u_{1}+\mu u_{2}+\nu u_{3}=0$; e.g. $(3,0,1)-2(1,-2,1)-(1,4,-1)=(0,0,0)$. So the three vectors are linearly dependent, so $\operatorname{dim} U<3$. On the other hand, there are clearly two linearly independent vectors among the three vectors given (any pair will do), so $\operatorname{dim} U \geq 2$.

Remark: An easy way to check whether a given basis for U is correct is to note that $U=\{(x, y, z): x-y=3 z\}$.
[3 marks]. Standard exercise.
(c) First method: Again, put w_{1}, w_{2}, w_{3} as the rows of a matrix, and use row operations to reduce to echelon form:

$$
\left(\begin{array}{ccc}
2 & 2 & 0 \\
-4 & 2 & -2 \\
5 & 2 & 1
\end{array}\right) \longrightarrow \ldots \longrightarrow\left(\begin{array}{ccc}
3 & 0 & 1 \\
0 & 3 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

Therefore the space W also has the basis $\{(3,0,1),(0,3,-1)\}$, and so $U=W$.
Second method: Since we have already computed the dimension of U as 2 , and the dimension of W is clearly at least 2 , it is enough to check that $W \subset U$; i.e., each of the vectors w_{j} belongs to U. This can be done, for example, by writing them as linear combinations of u_{1} and u_{2} (again solving a system of linear equations):

$$
w_{1}=u_{1}-u_{2}, \quad w_{2}=-u_{1}-u_{2}, \quad w_{3}=2 u_{1}-u_{2} .
$$

[4 marks]. Standard exercise.
9 marks in total for Question 1
2. A group is a set G together with a binary operation $*$ such that: (G1) for all $g_{1}, g_{2} \in G, g_{1} * g_{2} \in G$; (G2) for all $g_{1}, g_{2}, g_{3} \in G, g_{1} *\left(g_{2} * g_{3}\right)=\left(g_{1} * g_{2}\right) * g_{3} ;$ (G3) there exists an element $e \in G$ such that, for all $g \in G, e * g=g * e=g$; (G4) for every $g \in G$, there exists $g^{-1} \in G$ such that $g * g^{-1}=g^{-1} * g=e$.
[2 marks]. Standard definition from lectures.
If G, H are groups, then a map $\varphi: G \rightarrow H$ is a homomorphism if, for all $g_{1}, g_{2} \in G$, $\varphi\left(g_{1} *_{1} g_{2}\right)=\varphi\left(g_{1}\right) *_{2} \varphi\left(g_{2}\right)$, where $*_{1}$ is the group law in G and $*_{2}$ is the group law in H.
[1 marks]. Standard definition from lectures.
The map φ is injective if, for all $g_{1}, g_{2} \in G, \varphi\left(g_{1}\right)=\varphi\left(g_{2}\right) \Rightarrow g_{1}=g_{2}$. The map φ is surjective if, for all $h \in H$, there exists $g \in G$ such that $\varphi(g)=h$.
[2 marks]. Standard definitions from lectures.
Let x, y be arbitrary non-zero real numbers. We have

$$
\varphi(x y)=\left(\begin{array}{cc}
x y & 0 \\
0 & (x y)^{2}
\end{array}\right)=\left(\begin{array}{cc}
x y & 0 \\
0 & x^{2} y^{2}
\end{array}\right)=\left(\begin{array}{cc}
x & 0 \\
0 & x^{2}
\end{array}\right)\left(\begin{array}{cc}
y & 0 \\
0 & y^{2}
\end{array}\right)=\varphi(x) \varphi(y) .
$$

Hence φ is a homomorphism.
[$\mathbf{2}$ marks]. Seen somewhat similar in exercises.
If $\varphi(x)=\varphi(y)$, then (comparing the top left entries), we must have $x=y$, so φ is injective. The map φ is clearly not surjective, as e.g.

$$
\varphi(x) \neq\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

for all $x \in G$.
[2 marks]. Seen similar in exercises. 9 marks in total for Question 2
3.
(a) A function $\varphi: G \rightarrow G$ is an isomorphism if φ is a homomorphism, injective and surjective.
[2 marks]. Standard definition from lectures.
(b) The composition $\varphi \circ \psi$ of two isomorphisms is again an isomorphism. Indeed, we see that the composition is still a homomorphism:

$$
\varphi\left(\psi\left(v_{1} v_{2}\right)\right)=\varphi\left(\psi\left(v_{1}\right) \psi\left(v_{2}\right)\right)=\varphi\left(\psi\left(v_{1}\right)\right) \varphi\left(\psi\left(v_{2}\right)\right) .
$$

If $\varphi\left(\psi\left(v_{1}\right)\right)=\varphi\left(\psi\left(v_{2}\right)\right)$, then $\psi\left(v_{1}\right)=\psi\left(v_{2}\right)$ by injectivity of φ, and thus $v_{1}=v_{2}$ by injectivity of ψ. So $\varphi \circ \psi$ is injective.

Let $w \in V$. Then by surjectivity of φ, there is $v_{1} \in V$ such that $\varphi\left(v_{1}\right)=w$. By surjectivity of ψ, there is $v \in V$ such that $\psi(v)=v_{1}$. Then $\varphi(\psi(v))=\varphi\left(v_{1}\right)=w$, so $\varphi \circ \psi$ is surjective.
[4 marks].
Associativity is clearly satisfied. The neutral element is given by the identity map $\varphi(v)=v$. The inverse element of φ is given by its inverse φ^{-1}.
[3 marks]. Similar examples seen in exercises and lecture.
4.
(a) Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the standard basis vectors of \mathbb{R}^{4}. Then

$$
\varphi\left(e_{1}\right)=(-1,0,4,0)=-1 \cdot e_{1}+4 \cdot e_{3}
$$

so that the first column of the matrix should have entries $-1,0,4,0$. Proceeding similarly for e_{2}, e_{3} and e_{4}, we get

$$
M=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
4 & 0 & 3 & 4 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

[3 marks] Seen similar in exercises.
(b) We now compute

$$
\begin{aligned}
\operatorname{det}(\lambda I-M) & =\left|\begin{array}{cccc}
(\lambda+1) & 0 & 0 & 0 \\
0 & (\lambda-3) & 0 & 0 \\
-4 & 0 & (\lambda-3) & -4 \\
0 & 0 & 0 & (\lambda+1)
\end{array}\right| \\
& =(\lambda+1)\left|\begin{array}{ccc}
(\lambda-3) & 0 & 0 \\
0 & (\lambda-3) & -4 \\
0 & 0 & (\lambda+1)
\end{array}\right|=(\lambda+1)^{2}(\lambda-3)^{2} .
\end{aligned}
$$

So the eigenvalues of λ are -1 and 3 .
[3 marks] Standard exercise.
To find the eigenvectors corresponding to these eigenvalues, we must solve the equations $(I+M) v=0$ and $(3 I-M) v=0$:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
4 & 0 & 4 & 4 \\
0 & 0 & 0 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{cccc}
4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-4 & 0 & 0 & -4 \\
0 & 0 & 0 & 4
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

So we see that the eigenvectors with eigenvalue -1 are of the form $(\lambda, 0, \mu,-\lambda-\mu)$ and those with eigenvalue 3 are of the form $(0, \lambda, \mu, 0)$.
[2 marks] Standard exercise.
(c) In particular, the matrix M is diagonalizable, since we can find a basis of four linearly independent eigenvectors, e.g. $((1,0,0,-1),(0,0,1,-1),(0,1,0,0),(0,0,1,0))$.
[2 marks] Standard exercise.
10 marks in total for Question 4
5. We compute:

$$
\begin{aligned}
& f\left(u_{1}, u_{1}\right)=2 \cdot 2+2 \cdot 1 \cdot 2+1 \cdot 1=9 \\
& f\left(u_{1}, u_{2}\right)=2 \cdot(-1)+2 \cdot 1 \cdot(-1)+1 \cdot 2=-2 \\
& f\left(u_{2}, u_{1}\right)=(-1) \cdot 2+2 \cdot 2 \cdot 2+2 \cdot 1=8 \\
& f\left(u_{2}, u_{2}\right)=(-1) \cdot(-1)+2 \cdot 2 \cdot(-1)+2 \cdot 2=1
\end{aligned}
$$

So, the matrix of f wrt u_{1}, u_{2} is

$$
A=\left(\begin{array}{cc}
9 & -2 \\
8 & 1
\end{array}\right)
$$

[3 marks]
Similarly,

$$
\begin{aligned}
& f\left(v_{1}, v_{1}\right)=1 \cdot 1+2 \cdot 3 \cdot 1+3 \cdot 3=16 \\
& f\left(v_{1}, v_{2}\right)=1 \cdot 0+2 \cdot 3 \cdot 0+3 \cdot 5=15 \\
& f\left(v_{2}, v_{1}\right)=0 \cdot 1+2 \cdot 5 \cdot 1+5 \cdot 3=25 \\
& f\left(v_{2}, v_{2}\right)=0 \cdot 0+2 \cdot 5 \cdot 0+5 \cdot 5=25
\end{aligned}
$$

So the matrix of f wrt v_{1}, v_{2} is $B=\left(\begin{array}{ll}16 & 15 \\ 25 & 25\end{array}\right)$.
To compute the change-of-basis matrix, we write v_{j} as linear combinations of the u_{j}. (Again, this will involve solving a system of linear equations.)

$$
\begin{aligned}
& (1,3)=1 \cdot(2,1)+1 \cdot(-1,2) \\
& (0,5)=1 \cdot(2,1)+2 \cdot(-1,2)
\end{aligned}
$$

So the change-of-basis matrix is $P=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$.
Alternatively, we can obtain P as the composition of change-of-basis matrices from the given bases to the standard basis:

$$
P=\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right)^{-1} \cdot\left(\begin{array}{cc}
1 & 0 \\
3 & 5
\end{array}\right)=\frac{1}{5}\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
3 & 5
\end{array}\right)=\frac{1}{5}\left(\begin{array}{cc}
5 & 5 \\
5 & 10
\end{array}\right)
$$

Finally, it is easily checked that

$$
P^{T} A P=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
9 & -2 \\
8 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)=B
$$

6. The rank of φ is the dimension of $\operatorname{Im}(\varphi)$. The nullity of φ is the dimension of $\operatorname{ker}(\varphi)$.
[1 mark]. Standard definitions from lectures.
The rank and nullity theorem states that

$$
\operatorname{dim} V=\operatorname{rank}(\varphi)+\operatorname{nullity}(\varphi)
$$

[1 mark]. Standard theorem from lectures.
For $v_{1}=a_{1} x^{2}+b_{1} x+c_{1}$ and $v_{2}=a_{2} x^{2}+b_{2} x+c_{2}$ and $\lambda, \mu \in \mathbb{R}$, we have

$$
\begin{aligned}
& \varphi\left(\lambda v_{1}+\mu v_{2}\right) \\
& \quad=\left(\left(\lambda a_{1}+\mu a_{2}+\lambda c_{1}+\mu c_{2},-2\left(\lambda c_{1}+\mu c_{2}\right)+\lambda b_{1}+\mu b_{2}-2\left(\lambda a_{1}+\mu a_{2}\right), 3\left(\lambda b_{1}+\mu b_{2}\right)\right)\right. \\
& \quad=\lambda\left(a_{1}+c_{1},-2 c_{1}+b_{1}-2 a_{1}, 3 b_{1}\right)+\mu\left(a_{2}+c_{2},-2 c_{2}+b_{2}-2 a_{2}, 3 b_{2}\right)=\lambda \varphi\left(v_{1}\right)+\mu \varphi\left(v_{2}\right) .
\end{aligned}
$$

Thus φ is linear.
[2 marks]. Standard exercise.
There are several ways of determining the rank and nullity; usually we would want to use the rank and nullity theorem. For example, consider an arbitrary polynomial $v=$ $a x^{2}+b x+c$ in V. Then $v \in \operatorname{ker}(\varphi)$ if and only if

$$
a+c=0, \quad-2 c+b-2 a=0 \quad \text { and } \quad 3 b=0,
$$

which is clearly the case if and only if $b=0$ and $a=-c$. So

$$
\operatorname{ker}(\varphi)=\left\{a x^{2}-a: a \in \mathbb{R}\right\} .
$$

So nullity $(\varphi)=1$. Consequently $\operatorname{rank}(\varphi)=\operatorname{dim}(V)-\operatorname{nullity}(\varphi)=3-1=2$.
[4 marks]. Standard exercise.
Since $\operatorname{nullity}(\varphi) \neq 0, \varphi$ is not an isomorphism.
[1 mark]. Standard exercise.
(Remark: We have $\operatorname{Im}(\varphi)=\{(a, b, c): 6 a+3 b=c\}$.)
9 marks in total for Question 6

Section B

7. The matrix of the quadratic form

$$
q(x, y, z)=3 x^{2}-y^{2}-3 z^{2}+8 x z .
$$

with respect to the standard bases is

$$
A=\left(\begin{array}{ccc}
3 & 0 & 4 \\
0 & -1 & 0 \\
4 & 0 & -3
\end{array}\right)
$$

We can find a basis with respect to which q is diagonal by finding a basis consisting of orthogonal eigenvectors of A. The characteristic polynomial is

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\left|\left(\begin{array}{ccc}
(\lambda-3) & 0 & -4 \\
0 & (\lambda+1) & 0 \\
-4 & 0 & (\lambda+3)
\end{array}\right)\right| \\
& =(\lambda+1)\left|\left(\begin{array}{cc}
(\lambda-3) & -4 \\
-4 & (\lambda+3)
\end{array}\right)\right| \\
& =(\lambda+1)\left(\lambda^{2}-9-16\right) \\
& =(\lambda+1)(\lambda-5)(\lambda+5),
\end{aligned}
$$

so the eigenvalues are $-1,5,-5$. Solving the corresponding linear equations gives eigenvectors $(0,1,0),(2,0,1)$ and $(1,0,-2)$. The desired matrix P is thus given by

$$
P=\left(\begin{array}{ccc}
0 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & -2
\end{array}\right)
$$

The desired diagonal matrix is

$$
D=P^{T} A P=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 25 & 0 \\
0 & 0 & -25
\end{array}\right)
$$

[9 marks].
The diagonal matrix has full rank, so the rank of q is 3 . The signature is the number of positive entries minus the number of negative entries, and is thus -1 . The surface is a hyperboloid of two sheets.

15 marks in total for Question 7 Seen somewhat similar in exercises.
8.
(a) Statement (ii) is true. Indeed, we have

$$
b=e b=\left(a^{-1} a\right) b=a^{-1}(a b)=a^{-1}(a c)=\left(a^{-1} a\right) c=e c=c .
$$

[2 marks]. Seen in Lectures.
Statement (i) follows from (ii), letting $c=e$. (Alternatively, it can be proved in the same way as (ii).)
[2 marks]. Seen in Lectures.
Statement (iii) is false. For example, let $G=C_{2}$, and let a be the unique nonidentity element. Then $a^{2}=e$, but $a \neq e$.
[3 marks]. Unseen.
(b) First of all, since $E D=E, D$ must be the identity element of the group. So we can fill in the corresponding column and row:

$*$	A	B	C	D	E
A	$?$	D	$?$	A	$?$
B	$?$	C	$?$	B	A
C	$?$	$?$	A	C	$?$
D	A	B	C	D	E
E	$?$	$?$	$?$	E	$?$

Every line and column in the group table must contain each element. The second column is only missing elements A and E; however, the last row already contains an E. So we can complete this column:

$*$	A	B	C	D	E
A	$?$	D	$?$	A	$?$
B	$?$	C	$?$	B	A
C	$?$	E	A	C	$?$
D	A	B	C	D	E
E	$?$	A	$?$	E	$?$

To continue, we can observe, for example, that $B A=B E B=A B=D$. This allows us to fill in the second row.

$*$	A	B	C	D	E
A	$?$	D	$?$	A	$?$
B	D	C	E	B	A
C	$?$	E	A	C	$?$
D	A	B	C	D	E
E	$?$	A	$?$	E	$?$

It is now easy to fill in the rest of the group table:

$*$	A	B	C	D	E
A	E	D	B	A	C
B	D	C	E	B	A
C	B	E	A	C	D
D	A	B	C	D	E
E	C	A	D	E	B.

[5 marks]. Seen similar in exercises.
(c) The cyclic group C_{5} with five elements has the same group table.
[3 marks]. Unseen.
15 marks in total for Question 8
9. Let $V=\mathbb{R}^{2 \times 2}$, and let

$$
\begin{aligned}
U & :=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): b+c=0 \text { and } a+d=0\right\} . \\
W & :=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): b+c=0, a+c=0 \text { and } a=b\right\} .
\end{aligned}
$$

Let $v_{1}=\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)$ and $v_{2}=\left(\begin{array}{cc}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)$ be elements of U. Then

$$
\lambda v_{1}+\mu v_{2}=\left(\begin{array}{ll}
\lambda a_{1}+\mu a_{2} & \lambda b_{1}+\mu b_{2} \\
\lambda c_{1}+\mu c_{2} & \lambda d_{1}+\mu d_{2}
\end{array}\right),
$$

and we see that

$$
\begin{aligned}
& \left(\lambda c_{1}+\mu c_{2}\right)+\left(\lambda d_{1}+\mu d_{2}\right)=\lambda\left(c_{1}+d_{1}\right)+\mu\left(c_{2}+d_{2}\right)=\lambda \cdot 0+\mu \cdot 0=0, \quad \text { and } \\
& \left(\lambda a_{1}+\mu a_{2}\right)+\left(\lambda d_{1}+\mu d_{2}\right)=\lambda\left(a_{1}+d_{1}\right)+\mu\left(a_{2}+d_{2}\right)=0 ;
\end{aligned}
$$

i.e., $v_{1}+v_{2} \in U$. Thus U is a subspace of V.
[4 marks].
If $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in U$, then we have $d=-a$ and $c=-b$, so we can write

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
-b & -a
\end{array}\right)=a\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+b\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),
$$

so the two vectors

$$
\left(\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right)
$$

form a spanning set of U. Since they are also clearly linearly independent, they form a basis of U, and thus the dimension of U is two.

Similarly, the vectors

$$
\left(\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right)
$$

form a basis for W, and the dimension of W is also two.
[4 marks].
Since the vector $\left(\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right)$ belongs to both U and W, we see that the dimension of $U \cap W$ is at least 1 ; since $U \neq W$, the dimension is also at most 1 . In particular, the above vector forms a basis for $U \cap W$.
(Alternatively, we can solve the equations in the definitions of U and W simultaneously, and obtain $b=a, c=-a$ and $d=-a$.)
[3 marks].
We thus have $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)=2+2-1=3$. A basis for $U+W$ is given by the three vectors

$$
\left(\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right),
$$

which are clearly linearly independent.
[3 marks].
Since $U \cap W \neq\{0\}, V$ is not the direct sum of U and W.
[1 mark].
15 marks in total for Question 9 Seen similar in exercises
10.
(a) We have

$$
\begin{aligned}
\operatorname{ker}(\varphi) & =\{(x, y, z): y=-4 x, z=2 x\} \\
& =\{(x,-4 x, 2 x): x \in \mathbb{R}\} .
\end{aligned}
$$

A basis for this space is given by $(1,-4,2)$, so $\operatorname{nullity}(\varphi)=1$.
[3 marks]. Standard exercise.
In particular, we see that $\operatorname{rank}(\varphi)=3-1=2$, so we only need to find two linearly independent vectors in the image of φ. Two such vectors are given by $v_{1}=\varphi(0,1,0)=(0,1,0)$ and $v_{2}=\varphi(0,0,1)=(0,0,1)$.
(Any basis of $\operatorname{Im}(\varphi)=\{(0, y, z): y, z \in \mathbb{R}\}$ gives a correct answer.)
[3 marks]. Standard exercise.
(b) We have already seen that the vectors $\{(0, y, z): y, z \in \mathbb{R}\}$ are eigenvectors of φ with eigenvalue 1 , and that the vectors $(x,-4 x, 2 x)$ are eigenvectors with eigenvalue 0 . Since the dimensions of these spaces add up to three, these are all the eigenvectors and eigenvalues of φ.
(Alternatively, write down the matrix of φ with respect to the standard basis, and find all the eigenvectors and eigenvalues by solving the characteristic equation, etc.)
[3 marks].
(c) Since we have found three linearly independent eigenvectors, φ is diagonalizable, so the Jordan normal form of φ is diagonal. A basis which diagonalizes φ is given by any basis consisting of three linearly independent eigenvectors; e.g.

$$
B=((1,-4,2),(0,1,0),(0,0,1)) .
$$

[3 marks].
It is now easy to compute the matrix A, and verify that indeed

$$
A=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),
$$

as required.
[3 marks]. Similar example seen on exercise sheet.
15 marks in total for Question 10

