

SOLUTIONS FOR MATH244 (SEPTEMBER 2006)

Section A

1.

(a) The span of $\{v_1, \ldots, v_k\}$ is the set of all linear combinations of v_1, \ldots, v_k :

 $\operatorname{span}(v_1,\ldots,v_k) = \{\lambda_1 v_1 + \cdots + \lambda_k v_k : \lambda_1,\ldots,\lambda_k \in \mathbb{K}\}.$

(It is acceptable if students just cover the case of a real vector space, writing \mathbb{R} instead of \mathbb{K} .)[2 marks]. Standard definition from lectures.

(b) *First method*: First put u_1, u_2, u_3 as the rows of a matrix, and use row operations to reduce to echelon form. Solution:

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -2 & 1 \\ 1 & 4 & -1 \end{pmatrix} \longrightarrow \dots \longrightarrow \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Thus (3,0,1), (0,3,-1) is a basis of U, and the dimension is 2.

Second method: Find a nontrivial solution to the equation $\lambda u_1 + \mu u_2 + \nu u_3 = 0$; e.g. (3,0,1) - 2(1,-2,1) - (1,4,-1) = (0,0,0). So the three vectors are linearly dependent, so dim U < 3. On the other hand, there are clearly two linearly independent vectors among the three vectors given (any pair will do), so dim $U \ge 2$.

Remark: An easy way to check whether a given basis for U is correct is to note that $U = \{(x, y, z) : x - y = 3z\}.$

- [3 marks]. Standard exercise.
- (c) First method: Again, put w_1, w_2, w_3 as the rows of a matrix, and use row operations to reduce to echelon form:

$$\begin{pmatrix} 2 & 2 & 0 \\ -4 & 2 & -2 \\ 5 & 2 & 1 \end{pmatrix} \longrightarrow \dots \longrightarrow \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Therefore the space W also has the basis $\{(3,0,1), (0,3,-1)\}$, and so U = W.

Second method: Since we have already computed the dimension of U as 2, and the dimension of W is clearly at least 2, it is enough to check that $W \subset U$; i.e., each of the vectors w_j belongs to U. This can be done, for example, by writing them as linear combinations of u_1 and u_2 (again solving a system of linear equations):

$$w_1 = u_1 - u_2, \quad w_2 = -u_1 - u_2, \quad w_3 = 2u_1 - u_2.$$

[4 marks]. Standard exercise. 9 marks in total for Question 1 **2.** A group is a set G together with a binary operation * such that: (G1) for all $g_1, g_2 \in G, g_1 * g_2 \in G$; (G2) for all $g_1, g_2, g_3 \in G, g_1 * (g_2 * g_3) = (g_1 * g_2) * g_3$; (G3) there exists an element $e \in G$ such that, for all $g \in G, e * g = g * e = g$; (G4) for every $g \in G$, there exists $g^{-1} \in G$ such that $g * g^{-1} = g^{-1} * g = e$.

[2 marks]. Standard definition from lectures. If G, H are groups, then a map $\varphi : G \to H$ is a homomorphism if, for all $g_1, g_2 \in G$, $\varphi(g_1 *_1 g_2) = \varphi(g_1) *_2 \varphi(g_2)$, where $*_1$ is the group law in G and $*_2$ is the group law in H. [1 marks]. Standard definition from lectures.

The map φ is *injective* if, for all $g_1, g_2 \in G$, $\varphi(g_1) = \varphi(g_2) \Rightarrow g_1 = g_2$. The map φ is *surjective* if, for all $h \in H$, there exists $g \in G$ such that $\varphi(g) = h$.

[2 marks]. Standard definitions from lectures. Let x, y be arbitrary non-zero real numbers. We have

$$\varphi(xy) = \begin{pmatrix} xy & 0\\ 0 & (xy)^2 \end{pmatrix} = \begin{pmatrix} xy & 0\\ 0 & x^2y^2 \end{pmatrix} = \begin{pmatrix} x & 0\\ 0 & x^2 \end{pmatrix} \begin{pmatrix} y & 0\\ 0 & y^2 \end{pmatrix} = \varphi(x)\varphi(y).$$

Hence φ is a homomorphism.

[2 marks]. Seen somewhat similar in exercises. If $\varphi(x) = \varphi(y)$, then (comparing the top left entries), we must have x = y, so φ is injective. The map φ is clearly not surjective, as e.g.

$$\varphi(x) \neq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

for all $x \in G$.

[2 marks]. Seen similar in exercises. 9 marks in total for Question 2

- 3.
- (a) A function $\varphi: G \to G$ is an *isomorphism* if φ is a homomorphism, injective and surjective.

[2 marks]. Standard definition from lectures.

(b) The composition $\varphi \circ \psi$ of two isomorphisms is again an isomorphism. Indeed, we see that the composition is still a homomorphism:

$$\varphi(\psi(v_1v_2)) = \varphi(\psi(v_1)\psi(v_2)) = \varphi(\psi(v_1))\varphi(\psi(v_2)).$$

If $\varphi(\psi(v_1)) = \varphi(\psi(v_2))$, then $\psi(v_1) = \psi(v_2)$ by injectivity of φ , and thus $v_1 = v_2$ by injectivity of ψ . So $\varphi \circ \psi$ is injective.

Let $w \in V$. Then by surjectivity of φ , there is $v_1 \in V$ such that $\varphi(v_1) = w$. By surjectivity of ψ , there is $v \in V$ such that $\psi(v) = v_1$. Then $\varphi(\psi(v)) = \varphi(v_1) = w$, so $\varphi \circ \psi$ is surjective.

[4 marks].

Associativity is clearly satisfied. The neutral element is given by the identity map $\varphi(v) = v$. The inverse element of φ is given by its inverse φ^{-1} .

[3 marks]. Similar examples seen in exercises and lecture.

9 marks in total for Question 3

4.

(a) Let e_1, e_2, e_3, e_4 be the standard basis vectors of \mathbb{R}^4 . Then

$$\varphi(e_1) = (-1, 0, 4, 0) = -1 \cdot e_1 + 4 \cdot e_3,$$

so that the first column of the matrix should have entries -1, 0, 4, 0. Proceeding similarly for e_2 , e_3 and e_4 , we get

$$M = \begin{pmatrix} -1 & 0 & 0 & 0\\ 0 & 3 & 0 & 0\\ 4 & 0 & 3 & 4\\ 0 & 0 & 0 & -1 \end{pmatrix}$$

[3 marks] Seen similar in exercises.

(b) We now compute

$$det(\lambda I - M) = \begin{vmatrix} (\lambda + 1) & 0 & 0 & 0 \\ 0 & (\lambda - 3) & 0 & 0 \\ -4 & 0 & (\lambda - 3) & -4 \\ 0 & 0 & 0 & (\lambda + 1) \end{vmatrix}$$
$$= (\lambda + 1) \begin{vmatrix} (\lambda - 3) & 0 & 0 \\ 0 & (\lambda - 3) & -4 \\ 0 & 0 & (\lambda + 1) \end{vmatrix} = (\lambda + 1)^2 (\lambda - 3)^2.$$

So the eigenvalues of λ are -1 and 3.

[3 marks] Standard exercise.

To find the eigenvectors corresponding to these eigenvalues, we must solve the equations (I + M)v = 0 and (3I - M)v = 0:

So we see that the eigenvectors with eigenvalue -1 are of the form $(\lambda, 0, \mu, -\lambda - \mu)$ and those with eigenvalue 3 are of the form $(0, \lambda, \mu, 0)$.

[2 marks] Standard exercise.

(c) In particular, the matrix M is diagonalizable, since we can find a basis of four linearly independent eigenvectors, e.g. ((1, 0, 0, -1), (0, 0, 1, -1), (0, 1, 0, 0), (0, 0, 1, 0)). [2 marks] Standard exercise.

10 marks in total for Question 4

4

5. We compute:

$$f(u_1, u_1) = 2 \cdot 2 + 2 \cdot 1 \cdot 2 + 1 \cdot 1 = 9,$$

$$f(u_1, u_2) = 2 \cdot (-1) + 2 \cdot 1 \cdot (-1) + 1 \cdot 2 = -2,$$

$$f(u_2, u_1) = (-1) \cdot 2 + 2 \cdot 2 \cdot 2 + 2 \cdot 1 = 8,$$

$$f(u_2, u_2) = (-1) \cdot (-1) + 2 \cdot 2 \cdot (-1) + 2 \cdot 2 = 1,$$

So, the matrix of f wrt u_1, u_2 is

$$A = \begin{pmatrix} 9 & -2 \\ 8 & 1 \end{pmatrix}.$$

[3 marks]

Similarly,

 $f(v_1, v_1) = 1 \cdot 1 + 2 \cdot 3 \cdot 1 + 3 \cdot 3 = 16,$ $f(v_1, v_2) = 1 \cdot 0 + 2 \cdot 3 \cdot 0 + 3 \cdot 5 = 15,$ $f(v_2, v_1) = 0 \cdot 1 + 2 \cdot 5 \cdot 1 + 5 \cdot 3 = 25,$ $f(v_2, v_2) = 0 \cdot 0 + 2 \cdot 5 \cdot 0 + 5 \cdot 5 = 25,$

So the matrix of f wrt v_1, v_2 is $B = \begin{pmatrix} 16 & 15 \\ 25 & 25 \end{pmatrix}$.

[3 marks]

To compute the change-of-basis matrix, we write v_j as linear combinations of the u_j . (Again, this will involve solving a system of linear equations.)

$$(1,3) = 1 \cdot (2,1) + 1 \cdot (-1,2)$$
$$(0,5) = 1 \cdot (2,1) + 2 \cdot (-1,2).$$

So the change-of-basis matrix is $P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.

Alternatively, we can obtain P as the composition of change-of-basis matrices from the given bases to the standard basis:

$$P = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 & 0 \\ 3 & 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 5 & 5 \\ 5 & 10 \end{pmatrix}.$$

Finally, it is easily checked that

$$P^{T}AP = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 9 & -2 \\ 8 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = B.$$

[3 marks].

9 marks in total for Question 5

Whole question: seen similar in exercises.

6. The rank of φ is the dimension of $\text{Im}(\varphi)$. The nullity of φ is the dimension of ker (φ) . [1 mark]. Standard definitions from lectures.

The rank and nullity theorem states that

$$\dim V = \operatorname{rank}(\varphi) + \operatorname{nullity}(\varphi)$$

[1 mark]. Standard theorem from lectures. For $v_1 = a_1x^2 + b_1x + c_1$ and $v_2 = a_2x^2 + b_2x + c_2$ and $\lambda, \mu \in \mathbb{R}$, we have $\varphi(\lambda v_1 + \mu v_2)$

$$= ((\lambda a_1 + \mu a_2 + \lambda c_1 + \mu c_2, -2(\lambda c_1 + \mu c_2) + \lambda b_1 + \mu b_2 - 2(\lambda a_1 + \mu a_2), 3(\lambda b_1 + \mu b_2))$$

= $\lambda (a_1 + c_1, -2c_1 + b_1 - 2a_1, 3b_1) + \mu (a_2 + c_2, -2c_2 + b_2 - 2a_2, 3b_2) = \lambda \varphi(v_1) + \mu \varphi(v_2).$

Thus φ is linear.

[2 marks]. Standard exercise.

There are several ways of determining the rank and nullity; usually we would want to use the rank and nullity theorem. For example, consider an arbitrary polynomial $v = ax^2 + bx + c$ in V. Then $v \in \text{ker}(\varphi)$ if and only if

$$a + c = 0$$
, $-2c + b - 2a = 0$ and $3b = 0$,

which is clearly the case if and only if b = 0 and a = -c. So

$$\ker(\varphi) = \{ax^2 - a : a \in \mathbb{R}\}.$$

So nullity(φ) = 1. Consequently rank(φ) = dim(V) – nullity(φ) = 3 – 1 = 2. [4 marks]. Standard exercise.

Since nullity $(\varphi) \neq 0$, φ is not an isomorphism.

[1 mark]. Standard exercise.

(*Remark:* We have $\operatorname{Im}(\varphi) = \{(a, b, c) : 6a + 3b = c\}$.)

9 marks in total for Question 6

Section B

7. The matrix of the quadratic form

$$q(x, y, z) = 3x^2 - y^2 - 3z^2 + 8xz.$$

with respect to the standard bases is

$$A = \begin{pmatrix} 3 & 0 & 4 \\ 0 & -1 & 0 \\ 4 & 0 & -3 \end{pmatrix}.$$

[3 marks].

We can find a basis with respect to which q is diagonal by finding a basis consisting of orthogonal eigenvectors of A. The characteristic polynomial is

$$det(\lambda I - A) = \left| \begin{pmatrix} (\lambda - 3) & 0 & -4 \\ 0 & (\lambda + 1) & 0 \\ -4 & 0 & (\lambda + 3) \end{pmatrix} \right|$$
$$= (\lambda + 1) \left| \begin{pmatrix} (\lambda - 3) & -4 \\ -4 & (\lambda + 3) \end{pmatrix} \right|$$
$$= (\lambda + 1)(\lambda^2 - 9 - 16)$$
$$= (\lambda + 1)(\lambda - 5)(\lambda + 5),$$

so the eigenvalues are -1, 5, -5. Solving the corresponding linear equations gives eigenvectors (0, 1, 0), (2, 0, 1) and (1, 0, -2). The desired matrix P is thus given by

$$P = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & -2 \end{pmatrix}.$$

The desired diagonal matrix is

$$D = P^T A P = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 25 & 0 \\ 0 & 0 & -25 \end{pmatrix}.$$

[9 marks].

The diagonal matrix has full rank, so the rank of q is 3. The signature is the number of positive entries minus the number of negative entries, and is thus -1. The surface is a hyperboloid of two sheets.

[3 marks].

15 marks in total for Question 7 Seen somewhat similar in exercises.

(a) Statement (ii) is true. Indeed, we have

$$b = eb = (a^{-1}a)b = a^{-1}(ab) = a^{-1}(ac) = (a^{-1}a)c = ec = c.$$

[2 marks]. Seen in Lectures. Statement (i) follows from (ii), letting c = e. (Alternatively, it can be proved in the same way as (ii).)

[2 marks]. Seen in Lectures. Statement (iii) is false. For example, let $G = C_2$, and let a be the unique nonidentity element. Then $a^2 = e$, but $a \neq e$.

[3 marks]. Unseen.

(b) First of all, since ED = E, D must be the identity element of the group. So we can fill in the corresponding column and row:

* А В С D Ε А ? D ? А ? ? С ? В В А ? ? \mathbf{C} А С ? С D А В D Е E ? ? ? Ε ?

Every line and column in the group table must contain each element. The second column is only missing elements A and E; however, the last row already contains an E. So we can complete this column:

*	A	В	С	D	Ε
А	?	D	?	А	?
В	?	С	?	A B C D	А
С	?	Е	А	С	?
D	A	В	С	D	Ε
Ε	?	А	?	Ε	?

To continue, we can observe, for example, that BA = BEB = AB = D. This allows us to fill in the second row.

*	Ã	B	С	D	Ĕ
Α	?	D C E B	?	А	?
В	D	С	Е	В	А
С	?	Ε	А	С	?
D	А	В	С	D	Е
Е	?	А	?	Е	?

It is now easy to fill in the rest of the group table:

*	A	В	С	D	Ε
Α	Е	D	В	А	С
В	D	С	Е	В	А
С	В	Е	А	С	D
D	A	В	С	D	Ε
Е	C	А	D	A B C D E	В.

[5 marks]. Seen similar in exercises.

(c) The cyclic group C_5 with five elements has the same group table.

[3 marks]. Unseen.

15 marks in total for Question 8

9. Let $V = \mathbb{R}^{2 \times 2}$, and let

$$U := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : b + c = 0 \text{ and } a + d = 0 \right\}.$$
$$W := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : b + c = 0, \ a + c = 0 \text{ and } a = b \right\}.$$
Let $v_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$ be elements of U . Then
$$\lambda v_1 + \mu v_2 = \begin{pmatrix} \lambda a_1 + \mu a_2 & \lambda b_1 + \mu b_2 \\ \lambda c_1 + \mu c_2 & \lambda d_1 + \mu d_2 \end{pmatrix},$$

and we see that

$$(\lambda c_1 + \mu c_2) + (\lambda d_1 + \mu d_2) = \lambda (c_1 + d_1) + \mu (c_2 + d_2) = \lambda \cdot 0 + \mu \cdot 0 = 0, \text{ and} (\lambda a_1 + \mu a_2) + (\lambda d_1 + \mu d_2) = \lambda (a_1 + d_1) + \mu (a_2 + d_2) = 0;$$

i.e., $v_1 + v_2 \in U$. Thus U is a subspace of V.

If
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in U$$
, then we have $d = -a$ and $c = -b$, so we can write
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ -b & -a \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

so the two vectors

$$\left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right)$$

form a spanning set of U. Since they are also clearly linearly independent, they form a basis of U, and thus the dimension of U is two.

Similarly, the vectors

$$\left(\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

form a basis for W, and the dimension of W is also two.

[4 marks].

[4 marks].

Since the vector $\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ belongs to both U and W, we see that the dimension of $U \cap W$ is at least 1; since $U \neq W$, the dimension is also at most 1. In particular, the above vector forms a basis for $U \cap W$.

(Alternatively, we can solve the equations in the definitions of U and W simultaneously, and obtain b = a, c = -a and d = -a.) [3 marks].

We thus have $\dim(U+W) = \dim U + \dim W - \dim(U \cap W) = 2 + 2 - 1 = 3$. A basis for U+W is given by the three vectors

$$\left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right),$$

10

which are clearly linearly independent.

[3 marks].

Since $U \cap W \neq \{0\}$, V is not the direct sum of U and W.

[1 mark].

15 marks in total for Question 9 Seen similar in exercises

10.

(a) We have

$$\ker(\varphi) = \{(x, y, z) : y = -4x, z = 2x\} \\ = \{(x, -4x, 2x) : x \in \mathbb{R}\}.$$

A basis for this space is given by (1, -4, 2), so nullity $(\varphi) = 1$.

[3 marks]. Standard exercise. In particular, we see that $\operatorname{rank}(\varphi) = 3 - 1 = 2$, so we only need to find two linearly independent vectors in the image of φ . Two such vectors are given by $v_1 = \varphi(0, 1, 0) = (0, 1, 0)$ and $v_2 = \varphi(0, 0, 1) = (0, 0, 1)$.

(Any basis of $\operatorname{Im}(\varphi) = \{(0, y, z) : y, z \in \mathbb{R}\}$ gives a correct answer.)

[3 marks]. Standard exercise.
(b) We have already seen that the vectors {(0, y, z) : y, z ∈ ℝ} are eigenvectors of φ with eigenvalue 1, and that the vectors (x, -4x, 2x) are eigenvectors with eigenvalue 0. Since the dimensions of these spaces add up to three, these are all the eigenvectors and eigenvalues of φ.

(Alternatively, write down the matrix of φ with respect to the standard basis, and find all the eigenvectors and eigenvalues by solving the characteristic equation, etc.) [3 marks].

(c) Since we have found three linearly independent eigenvectors, φ is diagonalizable, so the Jordan normal form of φ is diagonal. A basis which diagonalizes φ is given by any basis consisting of three linearly independent eigenvectors; e.g.

$$B = ((1, -4, 2), (0, 1, 0), (0, 0, 1)).$$

[3 marks].

It is now easy to compute the matrix A, and verify that indeed

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

as required.

[3 marks]. Similar example seen on exercise sheet. 15 marks in total for Question 10

12