THE UNIVERSITY
 of LIVERPOOL

SECTION A

1.

(a) Let V be a vector space. Define the subspace $\operatorname{span}(A)$ spanned by a subset $A=\left\{v_{1}, \ldots, v_{k}\right\}$ of V.
(b) Let $V=\mathbb{R}^{3}$, and let U be the subspace of V spanned by $u_{1}=(3,0,1)$, $u_{2}=(1,-2,1)$ and $u_{3}=(1,4,-1)$. Find the dimension of U.
(c) Let W be the subspace of V spanned by $w_{1}=(2,2,0), w_{2}=(-4,2,-2)$ and $w_{3}=(5,2,1)$. Show that $U=W$.
2. Define the terms: group, homomorphism, injective, surjective.

Let G be the group of non-zero real numbers under multiplication. Let H be the group of invertible 2×2 matrices with real entries, under matrix multiplication. [You need not show that these are groups]. Let $\varphi: G \rightarrow H$ be defined by

$$
\varphi(x)=\left(\begin{array}{cc}
x & 0 \\
0 & x^{2}
\end{array}\right) .
$$

Is φ a homomorphism? Is φ injective? Is φ surjective? (Justify your answers.)
[9 marks]
3. Let G be a group.
(a) Say what it means for a function $\varphi: G \rightarrow G$ to be an isomorphism of G to itself.
(b) Show that the set of isomorphisms from G to itself is a group under composition.

THE UNIVERSITY
 of LIVERPOOL

4. Let $V=\mathbb{R}^{4}$, and let the linear map $\varphi: V \rightarrow V$ be defined by

$$
\varphi(a, b, c, d)=(-a, 3 b, 4(a+d)+3 c,-d)
$$

[You need not show that φ is linear.]
(a) Find M, the matrix representation of φ with respect to the standard basis.
(b) What are the eigenvalues and eigenvectors of M ?
(c) Is M diagonalizable?
[10 marks]
5. Let f be the bilinear form on \mathbb{R}^{2} defined by

$$
f\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=x_{1} x_{2}+2 y_{1} x_{2}+y_{1} y_{2} .
$$

Let $u_{1}=(2,1), u_{2}=(-1,2)$. Compute $f\left(u_{1}, u_{1}\right), f\left(u_{1}, u_{2}\right), f\left(u_{2}, u_{1}\right), f\left(u_{2}, u_{2}\right)$. Find the matrix A of f relative to the basis $\left\{u_{1}, u_{2}\right\}$. Find the matrix B of f relative to the basis $\left\{v_{1}, v_{2}\right\}$, where $v_{1}=(1,3), v_{2}=(0,5)$.

Find the change of basis matrix P from $\left\{u_{1}, u_{2}\right\}$ to $\left\{v_{1}, v_{2}\right\}$ and check that $B=P^{T} A P$.
6. Let V and W be finite-dimensional vector spaces, and let $\varphi: V \rightarrow W$ be linear. Define the rank and nullity of φ. State the rank and nullity theorem.

Let $V=\operatorname{Pol}_{2}(\mathbb{R})$ be the vector space of polynomials of degree at most 2 , and let $W=\mathbb{R}^{3}$. Define $\varphi: V \rightarrow W$ by

$$
\varphi\left(a x^{2}+b x+c\right)=(a+c,-2 c+b-2 a, 3 b) .
$$

Show that φ is a linear map and compute its rank and nullity. Is φ an isomorphism?
[9 marks]

THE UNIVERSITY
 of LIVERPOOL

SECTION B

7. Consider the quadratic form

$$
q(x, y, z)=3 x^{2}-y^{2}-3 z^{2}+8 x z .
$$

Give the matrix A representing q with respect to the standard basis. Find a diagonal matrix D equivalent to A and the matrix P which describes the change of basis from the standard basis to the basis in which q is diagonal. What are the rank and signature of q ? What type of quadric surface is described by the equation $q(x, y, z)=10$?
[15 marks]
8.
(a) Let G be a group, and let e be the identity element of G. Which of the following statements are true, and which are false? Give proofs of any true statements, and counterexamples to any false statements.
(i) Let $a, b \in G$, and suppose that $a b=a$. Then $b=e$.
(ii) Let $a, b, c \in G$, and suppose that $a b=a c$. Then $b=c$.
(iii) Let $a \in G$ and suppose that $a^{2}=e$. Then $a=e$.
(b) The following is a partially completed group table. Fill in the missing entries. You must justify why each choice of entry is the only one possible.

$*$	A	B	C	D	E
A	$?$	D	$?$	$?$	$?$
B	$?$	C	$?$	$?$	A
C	$?$	$?$	A	$?$	$?$
D	$?$	$?$	$?$	$?$	$?$
E	$?$	$?$	$?$	E	$?$

(c) Name a known group with the group table from (b).

THE UNIVERSITY
 of LIVERPOOL

9. Let $V=\mathbb{R}^{2 \times 2}$ be the vector space of real 2×2 matrices. Let

$$
U=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): b+c=0 \text { and } a+d=0\right\} .
$$

Show that U is a subspace of V.
Similarly,

$$
W=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): b+c=0, a+c=0 \text { and } a=b\right\} .
$$

is a subspace of V [you do not need to show this].
Find bases for each of $U, W, U \cap W$ and $U+W$. Is it true or false that $U+W=U \oplus W$?
10. Consider the linear map $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
\varphi(x, y, z)=(0, y+4 x, z-2 x)
$$

[You need not show that φ is linear.]
(a) Find a basis for U, the image of φ, and a basis for W, the kernel of φ. What are the rank and the nullity of φ ?
(b) Find the eigenvalues and eigenvectors of φ.
(c) Find a basis B of \mathbb{R}^{3} such that the matrix A of φ with respect to B is in Jordan normal form. (When you have found B, you should compute the matrix A to verify that it has the required form.)

