

SOLUTIONS FOR MATH244 (MAY 2006)

Section A

1.

- (a) $\{v_1, \ldots, v_k\}$ are linearly independent if the only solution to $\lambda_1 v_1 + \ldots \lambda_k v_k = 0$ is given by $\lambda_1 = \cdots = \lambda_k = 0$. (Alternatively: none of v_1, \ldots, v_k can be written as a linear combination of the other vectors.)
- [2 marks]. Standard definition from lectures.
 (b) First method: First put u₁, u₂, u₃ as the rows of a matrix, and use row operations to reduce to echelon form. Solution:

$$\begin{pmatrix} 1 & -1 & 1 \\ 1 & 2 & -1 \\ 3 & 0 & 1 \end{pmatrix} \longrightarrow \ldots \longrightarrow \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & -2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Thus (3,0,1), (0,3,-2) is a basis of U, and the dimension is 2.

Second method: Find a nontrivial solution to the equation $\lambda u_1 + \mu u_2 + \nu u_3 = 0$; e.g. 2(1, -1, 1) + (1, 2, -1) - (3, 0, 1) = (0, 0, 0). So the three vectors are linearly dependent, so dim U < 3. On the other hand, there are clearly two linearly independent vectors among the three vectors given (any pair will do), so dim $U \ge 2$.

Remark: An easy way to check whether a given basis for U is correct is to note that $U = \{(x, y, z) : x - 2y = 3z\}.$

[3 marks]. Standard exercise.
 (c) First method: Again, put w₁, w₂, w₃ as the rows of a matrix, and use row operations to reduce to echelon form:

$$\begin{pmatrix} -4 & 1 & -2 \\ 2 & 1 & 0 \\ 5 & 1 & 1 \end{pmatrix} \longrightarrow \ldots \longrightarrow \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

Therefore the space W also has the basis $\{(3,0,1), (0,3,-2)\}$, and so U = W.

Second method: Since we have already computed the dimension of U as 2, and the dimension of W is clearly at least 2, it is enough to check that $W \subset U$; i.e., each of the vectors w_j belongs to U. This can be done, for example, by writing them as linear combinations of u_1 and u_2 (again solving a system of linear equations):

$$w_1 = -3u_1 - u_2, \quad w_2 = u_1 + u_2, \quad w_3 = 3u_1 + 2u_2$$

[4 marks]. Standard exercise.

9 marks in total for Question 1

2. We compute:

$$f(u_1, u_1) = 2 \cdot 1 \cdot 1 + 1 \cdot (-1) + 2 \cdot (-1) \cdot (-1) = 3,$$

$$f(u_1, u_2) = 2 \cdot 1 \cdot 1 + 1 \cdot (-2) + 2 \cdot (-1) \cdot (-2) = 4,$$

$$f(u_2, u_1) = 2 \cdot 1 \cdot 1 + 1 \cdot (-1) + 2 \cdot (-2) \cdot (-1) = 5.$$

$$f(u_2, u_2) = 2 \cdot 1 \cdot 1 + 1 \cdot (-2) + 2 \cdot (-2) \cdot (-2) = 8.$$

So, the matrix of f wrt u_1, u_2 is

$$A = \begin{pmatrix} 3 & 4 \\ 5 & 8 \end{pmatrix}.$$

[3 marks]

Similarly,

$$f(v_1, v_1) = 2 \cdot (-2) \cdot (-2) + (-2) \cdot 1 + 2 \cdot 1 \cdot 1 = 8,$$

$$f(v_1, v_2) = 2 \cdot (-2) \cdot 5 + (-2) \cdot 1 + 2 \cdot 1 \cdot 1 = -20,$$

$$f(v_2, v_1) = 2 \cdot 5 \cdot (-2) + 5 \cdot 1 + 2 \cdot 1 \cdot 1 = -13,$$

$$f(v_2, v_2) = 2 \cdot 5 \cdot 5 + 5 \cdot 1 + 2 \cdot 1 \cdot 1 = 57,$$

So, the matrix of f wrt v_1, v_2 is

$$B = \begin{pmatrix} 8 & -20\\ -13 & 57 \end{pmatrix}.$$

[3 marks]

To compute the change-of-basis matrix, we write v_j as linear combinations of the u_j . (Again, this will involve solving a system of linear equations.)

$$(-2,1) = -3 \cdot (1,-1) + 1 \cdot (1,-2)$$

(5,1) = 11 \cdot (1,-1) - 6 \cdot (1,-2).

So the change-of-basis matrix is

$$P = \begin{pmatrix} -3 & 11\\ 1 & -6 \end{pmatrix}.$$

Alternatively, we can obtain P as the composition of change-of-basis matrices from the given bases to the standard basis:

$$P = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}^{-1} \cdot \begin{pmatrix} -2 & 5 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} -2 & 5 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 11 \\ 1 & -6 \end{pmatrix}$$

Finally, it is easily checked that

$$P^{T}AP = \begin{pmatrix} -3 & 1\\ 11 & -6 \end{pmatrix} \begin{pmatrix} 3 & 4\\ 5 & 8 \end{pmatrix} \begin{pmatrix} -3 & 11\\ 1 & -6 \end{pmatrix} = B$$

[3 marks].

9 marks in total for Question 2

Whole question: seen similar in exercises.

 $\mathbf{2}$

3. Let $e_1 = x^2, e_2 = x, e_3 = 1$. Then

$$\varphi(e_1) = \varphi(x^2) = 3x^2 - 2x + 2 = 3 \cdot e_1 - 2 \cdot e_2 + 2 \cdot e_3$$

so that the first column of the matrix should have entries 3, -2, 2. Proceeding similarly for e_2 and e_3 , we get

$$M = \begin{pmatrix} 3 & 1 & 0 \\ -2 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix}.$$

[3 marks] Seen similar in exercises.

We now compute

$$det(\lambda I - M) = \begin{vmatrix} (\lambda - 3) & -1 & 0 \\ 2 & (\lambda - 1) & -1 \\ -3 & -1 & (\lambda - 1) \end{vmatrix}$$
$$= (\lambda - 1) \begin{vmatrix} (\lambda - 3) & -1 \\ 2 & (\lambda - 1) \end{vmatrix} + \begin{vmatrix} (\lambda - 3) & -1 \\ -2 & -1 \end{vmatrix}$$
$$= (\lambda - 1)((\lambda - 3)(\lambda - 1) + 2) + (1 - \lambda)$$
$$= (\lambda - 1)(\lambda^2 - 4\lambda + 4) = (\lambda - 1)(\lambda - 2)^2.$$

So the eigenvalues of λ are 1 and 2.

[4 marks] Standard exercise.

To find the eigenvectors corresponding to these eigenvalues, we must solve the equations (M - I)v = 0 and (M - 2I)v = 0:

$$\begin{pmatrix} 2 & 1 & 0 \\ -2 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$
$$\begin{pmatrix} 1 & 1 & 0 \\ -2 & -1 & 1 \\ 2 & 1 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

So we see that the eigenvectors with eigenvalue 1 are of the form $(\lambda, -2\lambda, 2\lambda)$ and those with eigenvalue 2 are of the form $(\lambda, -\lambda, \lambda)$.

[3 marks] Standard exercise.

In particular, the matrix M is not diagonalizable, since we can only find two linearly independent eigenvectors.

[1 mark] Standard exercise. 11 marks in total for Question 3 4. A group is a set G together with a binary operation * such that: (G1) for all $g_1, g_2 \in G, g_1 * g_2 \in G$; (G2) for all $g_1, g_2, g_3 \in G, g_1 * (g_2 * g_3) = (g_1 * g_2) * g_3$; (G3) there exists an element $e \in G$ such that, for all $g \in G, e * g = g * e = g$; (G4) for every $g \in G$, there exists $g^{-1} \in G$ such that $g * g^{-1} = g^{-1} * g = e$.

[2 marks]. Standard definition from lectures. If G, H are groups, then a map $\varphi : G \to H$ is a homomorphism if, for all $g_1, g_2 \in G$, $\varphi(g_1 *_1 g_2) = \varphi(g_1) *_2 \varphi(g_2)$, where $*_1$ is the group law in G and $*_2$ is the group law in H. [1 marks]. Standard definition from lectures.

The map φ is *injective* if, for all $g_1, g_2 \in G$, $\varphi(g_1) = \varphi(g_2) \Rightarrow g_1 = g_2$. The map φ is *surjective* if, for all $h \in H$, there exists $g \in G$ such that $\varphi(g) = h$. **[2 marks]**. Standard definitions from lectures

Let
$$g_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$$
 and $g_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$ be arbitrary elements of G . We have
 $\varphi(g_1 + g_2) = 3((a_1 + a_2) + (b_1 + b_2)) - 6((c_1 + c_2) - (d_1 + d_2))$
 $= 3a_1 + 3a_2 + 3b_1 + 3b_2 - 6c_1 - 6c_2 + 6d_1 + 6d_2$
 $= (3(a_1 + 3b_1) - 6(c_1 - d_1)) + (3(a_2 + 3b_2) - 6(c_2 - d_2))$
 $= \varphi(g_1) + \varphi(g_2).$

Hence φ is a homomorphism.

[2 marks]. Seen similar in exercises.

We have e.g.

$$\varphi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 3 = \varphi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

so φ is not injective. For any matrix $A \in G$, the value $\varphi(A)$ is an integer multiple of 3. In particular, $\varphi(A) \neq 1$ for all $A \in G$, so φ is not surjective.

[2 marks]. Seen similar in exercises. 9 marks in total for Question 4

The rank of φ is the dimension of $\text{Im}(\varphi)$. The nullity of φ is the dimension of ker (φ) . 5. [1 mark]. Standard definitions from lectures.

The rank and nullity theorem states that

$$\dim V = \operatorname{rank}(\varphi) + \operatorname{nullity}(\varphi)$$

[1 mark]. Standard theorem from lectures. For $v_1 = (x_1, y_1, z_1)$ and $v_2 = (x_2, y_2, z_2)$ in \mathbb{R}^3 and $\lambda, \mu \in \mathbb{R}$, we have $\varphi(\lambda v_1 + \mu v_2)$ $= \begin{pmatrix} ((\lambda x_1 + \mu x_2) + (\lambda y_1 + \mu y_2) + (\lambda z_1 + \mu z_2)) & (\lambda z_1 + \mu z_2) + (\lambda y_1 + \mu y_2) \\ 2(\lambda x_1 + \mu x_2) - (\lambda y_1 + \mu y_2) - (\lambda z_1 + \mu z_2) & 0 \end{pmatrix}$ $= \begin{pmatrix} \lambda (x_1 + y_1 + z_1) + \mu (x_2 + y_2 + z_2) & \lambda (z_1 + y_1) + \mu (z_2 + y_2) \\ \lambda (2x_1 - y_1 - z_1) + \mu (2x_2 - y_2 - z_2) & 0 \end{pmatrix}$ $=\lambda\varphi(v_1)+\mu\varphi$

Thus φ is linear.

[2 marks]. Standard exercise.

There are several ways of determining the rank and nullity; usually we would want to use the rank and nullity theorem. For example, let $(x, y, z) \in \mathbb{R}^3$. Then $(x, y, z) \in \ker(\varphi)$ if and only if

$$\begin{aligned} x+y+z &= 0,\\ z+y &= 0 \quad \text{and} \quad 2x-y-z &= 0, \end{aligned}$$

which is clearly the case if and only if z = -y and x = 0. So

$$\ker(\varphi)=\{(0,y,-y):y\in\mathbb{R}\}=\mathrm{span}((0,1,-1)).$$

So nullity $(\varphi) = 1$. Consequently rank $(\varphi) = \dim(\mathbb{R}^3) - \operatorname{nullity}(\varphi) = 2$.

(*Remark:* We have $\operatorname{Im}(\varphi) = \left\{ \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} : 2a = c + 3b \right\}$.) 8 marks in total for Question 5

(a) A function $\varphi: V \to V$ is an *isomorphism* if φ is linear, injective and surjective.

[2 marks]. Standard definition from lectures.

(b) The composition $\varphi \circ \psi$ of two isomorphisms is again an isomorphism. Indeed, we see that linearity holds:

$$\varphi(\psi(\lambda v_1 + \mu v_2)) = \varphi(\lambda \psi(v_1) + \mu \psi(v_2)) = \lambda \varphi(\psi(v_1)) + \mu \varphi(\psi(v_2)).$$

If $\varphi(\psi(v_1)) = \varphi(\psi(v_2))$, then $\psi(v_1) = \psi(v_2)$ by injectivity of φ , and thus $v_1 = v_2$ by injectivity of ψ . So $\varphi \circ \psi$ is injective.

Let $w \in V$. Then by surjectivity of φ , there is $v_1 \in V$ such that $\varphi(v_1) = w$. By surjectivity of ψ , there is $v \in V$ such that $\psi(v) = v_1$. Then $\varphi(\psi(v)) = \varphi(v_1) = w$, so $\varphi \circ \psi$ is surjective.

[4 marks].

Associativity is clearly satisfied. The neutral element is given by the identity map $\varphi(v) = v$. The inverse element of φ is given by its inverse φ^{-1} .

[3 marks]. Similar examples seen in exercises and lecture.

9 marks in total for Question 6

SECTION B

7.

(a) We have

$$\begin{aligned} \ker(\varphi) &= \{ (x, y, z, w) : x + z = w, 2x = z + 2w, 4x + z = 4w \} \\ &= \{ (x, y, z, w) : z = 0, x = w \} \\ &= \{ (x, y, 0, x) : x, y \in \mathbb{R}^4 \}. \end{aligned}$$

A basis for this space is given by (1, 0, 0, 1), (0, 1, 0, 0), so nullity $(\varphi) = 2$.

[3 marks]. Standard exercise. In particular, we see that rank(φ) = 4 - 2 = 2, so we only need to find two linearly independent vectors in the image of φ . Two such vectors are given by $v_1 = \varphi(0, 0, 1, 0) = (1, -1, 1)$ and $v_2 = \varphi(1, 0, 0, 0) = (1, 2, 4)$.

(It is easy to check that

$$Im(\varphi) = \{ (x, y, z) : z = 2x + y \},\$$

so any basis of this space gives a correct answer.)

[3 marks]. Standard exercise.
 (b) To put φ into standard form, we start by extending the given basis of ker(φ) to a basis of R⁴, for instance to the basis

$$B = ((0, 0, 1, 0), (1, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 0)).$$

We need to check that these are linearly independent, but for this choice of vectors, this is immediately obvious.

[3 marks].

Now we need to take the two vectors of B which are not in the kernel and compute their images:

$$\varphi(0,0,1,0) = (1,-1,1)$$
 and $\varphi(1,0,0,0) = (1,2,4)$.

We extend these two vectors to a basis of \mathbb{R}^3 , e.g. by taking

$$C = ((1, -, 1, 1), (1, 2, 4), (1, 0, 0)).$$

Again we need to check that this really is a basis of \mathbb{R}^3 . We could either check that the three vectors are linearly independent. Alternatively, it is easy to check directly that (1,0,0) is not in the image of φ .

[3 marks].

It remains to compute the matrix A: we have

$$\begin{split} \varphi(0,0,1,0) &= (1,-1,1) = 1 \cdot (1,-1,1) + 0 \cdot (1,2,4) + 0 \cdot (1,0,0), \\ \varphi(1,0,0,0) &= (1,2,4) = 0 \cdot (1,-1,1) + 1 \cdot (1,2,4) + 0 \cdot (1,0,0), \\ \varphi(1,0,0,1) &= (0,0,0) = 0 \cdot (1,-1,1) + 0 \cdot (1,2,4) + 0 \cdot (1,0,0), \\ \varphi(0,1,0,0) &= (0,0,0) = 0 \cdot (1,-1,1) + 0 \cdot (1,2,4) + 0 \cdot (1,0,0). \end{split}$$

So we indeed have

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

as required.

[3 marks]. Similar example seen on exercise sheet. 15 marks in total for Question 7 8. The matrix of the quadratic form

$$q(x, y, z) = 4x^2 - 4y^2 + z^2 + 6xy.$$

with respect to the standard bases is

$$A = \begin{pmatrix} 4 & 3 & 0 \\ 3 & -4 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

[3 marks].

We can find a basis with respect to which q is diagonal by finding a basis consisting of orthogonal eigenvectors of A. The characteristic polynomial is

$$det(\lambda I - A) = \left| \begin{pmatrix} (\lambda - 4) & -3 & 0 \\ -3 & (\lambda + 4) & 0 \\ 0 & 0 & (\lambda - 1) \end{pmatrix} \right|$$
$$= (\lambda - 1) \left| \begin{pmatrix} (\lambda - 4) & -3 \\ -3 & (\lambda + 4) \end{pmatrix} \right|$$
$$= (\lambda - 1)(\lambda^2 - 16 - 9)$$
$$= (\lambda - 1)(\lambda - 5)(\lambda + 5),$$

so the eigenvalues are 5, -5 and 1. Solving the corresponding linear equations gives eigenvectors (3, 1, 0), (1, -3, 0) and (0, 0, 1). The desired matrix P is thus given by

$$P = \begin{pmatrix} 3 & 1 & 0 \\ 1 & -3 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

The desired diagonal matrix is

$$D = P^T A P = \begin{pmatrix} 50 & 0 & 0 \\ 0 & -50 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

[9 marks].

The diagonal matrix has full rank, so the rank of q is 3. The signature is the number of positive entries minus the number of negative entries, and is thus 1. The surface is a hyperboloid of one sheet.

[3 marks].

15 marks in total for Question 8 Seen somewhat similar in exercises.

9. Let $V = \text{Pol}_3(\mathbb{R})$ be the vector space of polynomials with real coefficients of degree at most three, and let

$$U := \{ (2a+b)x^3 + ax^2 - (2a+b)x - b : a, b \in \mathbb{R} \} \text{ and}$$
$$W := \{ (b-a)x^3 + cx^2 + (a-b)x - c : a, b, c \in \mathbb{R} \}.$$

Let $v_1 = (2a_1+b_1)x^3 + a_1x^2 - (2a_1+b_1)x - b_1$ and $v_2 = (2a_2+b_2)x^3 + a_2x^2 - (2a_2+b_2)x - b)2$ be arbitrary elements of U, and let $\mu, \lambda \in \mathbb{R}$. Setting $a := \lambda a_1 + \mu a_2$ and $b := \lambda b_1 + \mu b_2$, a simple calculation shows

$$\lambda v_1 + \lambda v_2 = (2a+b)x^3 + ax^2 - (2a+b)x - b \in U.$$

So U is a subspace of V.

[4 marks].

By definition of U, $(2x^3 + x^2 - 2x, x^3 - x - 1)$ is a spanning set of U. Since the two vectors are clearly linearly independent, it is also a basis. Thus the dimension of U is two. Similarly, $(x^3 - x, x^2 - 1)$ is a basis for W, and the dimension of W is also two.

(We mention here that $U = \{ax^3 + bx^2 + cx + d : a + c = 0 \text{ and } a = 2b - d\}$ and $W = \{ax^3 + bx^2 + cx + d : a + c = 0 \text{ and } b + d = 0\}$; for either space, any two linearly independent vectors would provide an acceptable answer.)

[4 marks].

To find $U \cap W$, we need to decide when an arbitrary vector v of V belongs to both U and W. There are several ways of doing this:

(a) Using the definition of U and W, we need to solve the equations

$$2a_{1} + b_{1} = b_{2} - a_{2}$$
$$a_{1} = c_{2}$$
$$-2a_{1} - b_{1} = a_{2} - b_{2}$$
$$-b_{1} = -c_{2}.$$

So we have

$$U \cap W = \{3ax^3 + ax^2 - 3ax - a : a \in \mathbb{R}\}.$$

Thus $3x^3 + x^2 - 3x - 1$ is a basis for $U \cap W$, and $\dim(U \cap W) = 1$.

(b) Similarly, we can use the bases for U and W and solve the equation

$$\lambda_1(2x^3 + x^2 - 2x) + \mu_1(x^3 - x - 1) = \lambda_2(x^3 - x) + \mu_2(x^2 - 1).$$

Solving this equation, we get $\mu_1 = \mu_2 = \lambda_1$, and $\lambda_2 = 2\lambda_1 + \mu_1 = 3\lambda_1$. Again, we obtain $3x^3 + x^2 - 3x - 1$ as a basis for $U \cap W$.

(c) It is also sufficient to exhibit one single vector which belongs to both U and W; for example, the vector $3x^3 + x^2 - 3x - 1$ (which corresponds to a = b = 1 in the definition of U, and to a = 0, b = 3, c = 1 in the definition of W). Since $U \neq W$, the dimension of $U \cap W$ must then be 1.

[5 marks].

10

We thus have $\dim(U+W) = \dim U + \dim W - \dim(U \cap W) = 3$. (Note that we have $U+W = \{ax^3 + bx^2 + cx + d : a + c = 0\}$.) Since $U \cap W \neq \{0\}$, U+W is not the direct sum of U and W.

[2 marks].

15 marks in total for Question 10 Seen similar in exercises

(a) Statements (i) and (iii) are true. Statement (ii) is false when the group is non-abelian; an example is given e.g. by taking the symmetric group S_3 .

[3 marks]. From Lectures. Similarly, a counterexample in S_3 to (iv) is given by letting a be the permutation which exchanges the first two elements, and b and c be the two cyclic permutations. [3 marks]. Unseen.

(b) First of all, since A = AC, C must be the identity element of the group. So we can fill in the corresponding column and row:

A	В	Ċ	D	E	F								
В	?	А	Е	?	?								
C	?	В	?	?	?								
A	В	С	D	Е	F								
?	Е	D	С	?	?								
?	?	Е	А	?	?								
?	?	F	?	?	С								
, n	ote	that	$t B_{-}$	A =	AAA	A = AB =	C.	Furtherm	nore,	BB = 1	AAAA	A = AC	C = A.
A	В	С	D	Е	\mathbf{F}								
В	С	А	Е	?	?								
C	А	В	?	?	?								
A	В	С	D	Е	\mathbf{F}								
?	Е	D	С	?	?								
?	?	Е	А	?	?								
?	?	F	?	?	С								
	A B C A ? ? ? ?	A B B ? C ? A B ? E ? ? ? ? ? ? ? ? ? ? Provide A B C C A A B ? E ? ? ? ? ? ? ? ? ? ?	$ \begin{array}{c cccc} A & B & C \\ \hline B & ? & A \\ C & ? & B \\ A & B & C \\ ? & E & D \\ ? & P & E \\ ? & ? & E \\ ? & ? & F \\ \hline C & A & B & C \\ \hline B & C & A & B \\ A & B & C \\ ? & E & D \\ ? & P & E \\ ? & P & F \\ \hline \end{array} $	ABCDB?AEC?B?ABCD?EDC??EA??F?ct, note that B_1 ABCDBCAECAB?PBCAEC?EDC?EDC??EA??F?	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A B C D E F B ? A E ? ? C ? B ? ? ? A B C D E F ? E D C ? ? A B C D E F ? E D C ? ? ? F ? ? C C ? F ? ? C C ? F ? ? ? C C A B C D E F B C A E ? ? ? A B C D E F ? ? A B C D E F ? ? ? B C D C ? ? ? ? ? ? ?	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Every line and column in the group table must contain each element. The first row is only missing elements D and F; however, the last column already contains an F. So we can complete this row:

*	A	В	С	D	Ē	F
А	В	С	А	Ε	F	D
В	C	А	В	?	?	?
\mathbf{C}	A	В	С	D	Е	\mathbf{F}
D	?	Е	D	С	?	?
Е	?	?	Е	А	?	?
\mathbf{F}	?	?	\mathbf{F}	?	?	\mathbf{C}

12 10.

		• /					, 0 ,
*	A	В	С	D	Е	F	
Α	В	С	А	Е	F	D	
В	C	А	В	F	D	Ε	
С	A	В	С	D	Е	F	
D	?	Е	D	\mathbf{C}	?	?	
Ε	?	?	Е	А	?	?	
\mathbf{F}	?	?	F	?	?	С	
Con	itinι	iing	in [•]	this	way	, we	e can fill in the remaining entries:
*	A	В	С	D	Е	F	
Α	В	С	А	Е	F	D	_
В	C	А	В	F	D	Ε	
С	A	В	С	D	Ε	F	
D	F	Е	D	\mathbf{C}	В	Α	
Ε	D	F	Е	А	С	В	
\mathbf{F}	E	D	\mathbf{F}	В	А	С.	
	1						[6 marks]. Seen somewhat similar in

Similarly, we can fill in the second row, which is still missing D, E and F.

[6 marks]. Seen somewhat similar in exercises.
(c) The permutation group S₃ has the same group table (letting C be the identity, A and B the two cyclic permutations, and D,E and F the permutations which keep one element fixed while switching the other two).

[3 marks]. Unseen.

15 marks in total for Question 10