
SOLUTIONS FOR MATH244 (MAY 2006)

Section A

1.

(a) {v1, . . . , vk} are linearly independent if the only solution to λ1v1 + . . . λkvk = 0 is
given by λ1 = · · · = λk = 0. (Alternatively: none of v1, . . . , vk can be written as a
linear combination of the other vectors.)

[2 marks]. Standard definition from lectures.
(b) First method : First put u1, u2, u3 as the rows of a matrix, and use row operations

to reduce to echelon form. Solution:1 −1 1
1 2 −1
3 0 1

 −→ . . . −→

3 0 1
0 3 −2
0 0 0

 .

Thus (3, 0, 1), (0, 3,−2) is a basis of U , and the dimension is 2.
Second method : Find a nontrivial solution to the equation λu1 + µu2 + νu3 = 0;

e.g. 2(1,−1, 1) + (1, 2,−1) − (3, 0, 1) = (0, 0, 0). So the three vectors are linearly
dependent, so dimU < 3. On the other hand, there are clearly two linearly inde-
pendent vectors among the three vectors given (any pair will do), so dimU ≥ 2.

Remark: An easy way to check whether a given basis for U is correct is to note
that U = {(x, y, z) : x− 2y = 3z}.

[3 marks]. Standard exercise.
(c) First method : Again, put w1, w2, w3 as the rows of a matrix, and use row operations

to reduce to echelon form:−4 1 −2
2 1 0
5 1 1

 −→ . . . −→

3 0 1
0 3 −2
0 0 0

 .

Therefore the space W also has the basis {(3, 0, 1), (0, 3,−2)}, and so U = W .
Second method : Since we have already computed the dimension of U as 2, and

the dimension of W is clearly at least 2, it is enough to check that W ⊂ U ; i.e., each
of the vectors wj belongs to U . This can be done, for example, by writing them as
linear combinations of u1 and u2 (again solving a system of linear equations):

w1 = −3u1 − u2, w2 = u1 + u2, w3 = 3u1 + 2u2.

[4 marks]. Standard exercise.

9 marks in total for Question 1
1
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2. We compute:

f(u1, u1) = 2 · 1 · 1 + 1 · (−1) + 2 · (−1) · (−1) = 3,

f(u1, u2) = 2 · 1 · 1 + 1 · (−2) + 2 · (−1) · (−2) = 4,

f(u2, u1) = 2 · 1 · 1 + 1 · (−1) + 2 · (−2) · (−1) = 5.

f(u2, u2) = 2 · 1 · 1 + 1 · (−2) + 2 · (−2) · (−2) = 8.

So, the matrix of f wrt u1, u2 is

A =

(
3 4
5 8

)
.

[3 marks]
Similarly,

f(v1, v1) = 2 · (−2) · (−2) + (−2) · 1 + 2 · 1 · 1 = 8,

f(v1, v2) = 2 · (−2) · 5 + (−2) · 1 + 2 · 1 · 1 = −20,

f(v2, v1) = 2 · 5 · (−2) + 5 · 1 + 2 · 1 · 1 = −13,

f(v2, v2) = 2 · 5 · 5 + 5 · 1 + 2 · 1 · 1 = 57,

So, the matrix of f wrt v1, v2 is

B =

(
8 −20
−13 57

)
.

[3 marks]
To compute the change-of-basis matrix, we write vj as linear combinations of the uj.

(Again, this will involve solving a system of linear equations.)

(−2, 1) = −3 · (1,−1) + 1 · (1,−2)

(5, 1) = 11 · (1,−1)− 6 · (1,−2).

So the change-of-basis matrix is

P =

(
−3 11
1 −6

)
.

Alternatively, we can obtain P as the composition of change-of-basis matrices from the
given bases to the standard basis:

P =

(
1 1
−1 −2

)−1

·
(
−2 5
1 1

)
=

(
2 1
−1 −1

)−1 (
−2 5
1 1

)
=

(
−3 11
1 −6

)
.

Finally, it is easily checked that

P TAP =

(
−3 1
11 −6

) (
3 4
5 8

) (
−3 11
1 −6

)
= B.

[3 marks].
9 marks in total for Question 2

Whole question: seen similar in exercises.
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3. Let e1 = x2, e2 = x, e3 = 1. Then

ϕ(e1) = ϕ(x2) = 3x2 − 2x+ 2 = 3 · e1 − 2 · e2 + 2 · e3,
so that the first column of the matrix should have entries 3,−2, 2. Proceeding similarly
for e2 and e3, we get

M =

 3 1 0
−2 1 1
2 1 1

 .

[3 marks] Seen similar in exercises.
We now compute

det(λI −M) =

∣∣∣∣∣∣
(λ− 3) −1 0

2 (λ− 1) −1
−3 −1 (λ− 1)

∣∣∣∣∣∣
= (λ− 1)

∣∣∣∣(λ− 3) −1
2 (λ− 1)

∣∣∣∣ +

∣∣∣∣(λ− 3) −1
−2 −1

∣∣∣∣
= (λ− 1)((λ− 3)(λ− 1) + 2) + (1− λ)

= (λ− 1)(λ2 − 4λ+ 4) = (λ− 1)(λ− 2)2.

So the eigenvalues of λ are 1 and 2.
[4 marks] Standard exercise.

To find the eigenvectors corresponding to these eigenvalues, we must solve the equations
(M − I)v = 0 and (M − 2I)v = 0: 2 1 0

−2 0 1
2 1 0

 −→

2 1 0
0 1 1
0 0 0

 ,

 1 1 0
−2 −1 1
2 1 −1

 −→

1 1 0
0 1 1
0 0 0

 .

So we see that the eigenvectors with eigenvalue 1 are of the form (λ,−2λ, 2λ) and those
with eigenvalue 2 are of the form (λ,−λ, λ).

[3 marks] Standard exercise.
In particular, the matrix M is not diagonalizable, since we can only find two linearly

independent eigenvectors.
[1 mark] Standard exercise.

11 marks in total for Question 3
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4. A group is a set G together with a binary operation ∗ such that: (G1) for all
g1, g2 ∈ G, g1 ∗ g2 ∈ G; (G2) for all g1, g2, g3 ∈ G, g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3; (G3) there
exists an element e ∈ G such that, for all g ∈ G, e ∗ g = g ∗ e = g; (G4) for every g ∈ G,
there exists g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e.

[2 marks]. Standard definition from lectures.
If G,H are groups, then a map ϕ : G → H is a homomorphism if, for all g1, g2 ∈ G,

ϕ(g1 ∗1 g2) = ϕ(g1) ∗2 ϕ(g2), where ∗1 is the group law in G and ∗2 is the group law in H.
[1 marks]. Standard definition from lectures.

The map ϕ is injective if, for all g1, g2 ∈ G, ϕ(g1) = ϕ(g2) ⇒ g1 = g2. The map ϕ is
surjective if, for all h ∈ H, there exists g ∈ G such that ϕ(g) = h.

[2 marks]. Standard definitions from lectures.

Let g1 =

(
a1 b1
c1 d1

)
and g2 =

(
a2 b2
c2 d2

)
be arbitrary elements of G. We have

ϕ(g1 + g2) = 3((a1 + a2) + (b1 + b2))− 6((c1 + c2)− (d1 + d2))

= 3a1 + 3a2 + 3b1 + 3b2 − 6c1 − 6c2 + 6d1 + 6d2

= (3(a1 + 3b1)− 6(c1 − d1)) + (3(a2 + 3b2)− 6(c2 − d2))

= ϕ(g1) + ϕ(g2).

Hence ϕ is a homomorphism.
[2 marks]. Seen similar in exercises.

We have e.g.

ϕ

(
1 0
0 0

)
= 3 = ϕ

(
0 1
0 0

)
,

so ϕ is not injective. For any matrix A ∈ G, the value ϕ(A) is an integer multiple of 3. In
particular, ϕ(A) 6= 1 for all A ∈ G, so ϕ is not surjective.

[2 marks]. Seen similar in exercises.
9 marks in total for Question 4
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5. The rank of ϕ is the dimension of Im(ϕ). The nullity of ϕ is the dimension of ker(ϕ).
[1 mark]. Standard definitions from lectures.

The rank and nullity theorem states that

dimV = rank(ϕ) + nullity(ϕ).

[1 mark]. Standard theorem from lectures.
For v1 = (x1, y1, z1) and v2 = (x2, y2, z2) in R3 and λ, µ ∈ R, we have

ϕ(λv1 + µv2)

=

(
((λx1 + µx2) + (λy1 + µy2) + (λz1 + µz2)) (λz1 + µz2) + (λy1 + µy2)
2(λx1 + µx2)− (λy1 + µy2)− (λz1 + µz2) 0

)
=

(
λ(x1 + y1 + z1) + µ(x2 + y2 + z2) λ(z1 + y1) + µ(z2 + y2)
λ(2x1 − y1 − z1) + µ(2x2 − y2 − z2) 0

)
= λϕ(v1) + µϕ(v2).

Thus ϕ is linear.
[2 marks]. Standard exercise.

There are several ways of determining the rank and nullity; usually we would want to
use the rank and nullity theorem. For example, let (x, y, z) ∈ R3. Then (x, y, z) ∈ ker(ϕ)
if and only if

x+ y + z = 0,

z + y = 0 and 2x− y − z = 0,

which is clearly the case if and only if z = −y and x = 0. So

ker(ϕ) = {(0, y,−y) : y ∈ R} = span((0, 1,−1)).

So nullity(ϕ) = 1. Consequently rank(ϕ) = dim(R3)− nullity(ϕ) = 2.
[4 marks]. Standard exercise.

(Remark: We have Im(ϕ) =

{(
a b
c 0

)
: 2a = c+ 3b

}
.)

8 marks in total for Question 5
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6.

(a) A function ϕ : V → V is an isomorphism if ϕ is linear, injective and surjective.
[2 marks]. Standard definition from lectures.

(b) The composition ϕ ◦ ψ of two isomorphisms is again an isomorphism. Indeed, we
see that linearity holds:

ϕ(ψ(λv1 + µv2)) = ϕ(λψ(v1) + µψ(v2)) = λϕ(ψ(v1)) + µϕ(ψ(v2)).

If ϕ(ψ(v1)) = ϕ(ψ(v2)), then ψ(v1) = ψ(v2) by injectivity of ϕ, and thus v1 = v2

by injectivity of ψ. So ϕ ◦ ψ is injective.
Let w ∈ V . Then by surjectivity of ϕ, there is v1 ∈ V such that ϕ(v1) = w. By

surjectivity of ψ, there is v ∈ V such that ψ(v) = v1. Then ϕ(ψ(v)) = ϕ(v1) = w,
so ϕ ◦ ψ is surjective.

[4 marks].
Associativity is clearly satisfied. The neutral element is given by the identity map

ϕ(v) = v. The inverse element of ϕ is given by its inverse ϕ−1.
[3 marks]. Similar examples seen in exercises and lecture.

9 marks in total for Question 6
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Section B

7.

(a) We have

ker(ϕ) = {(x, y, z, w) : x+ z = w, 2x = z + 2w, 4x+ z = 4w}
= {(x, y, z, w) : z = 0, x = w}
= {(x, y, 0, x) : x, y ∈ R4}.

A basis for this space is given by (1, 0, 0, 1), (0, 1, 0, 0), so nullity(ϕ) = 2.
[3 marks]. Standard exercise.

In particular, we see that rank(ϕ) = 4 − 2 = 2, so we only need to find two
linearly independent vectors in the image of ϕ. Two such vectors are given by
v1 = ϕ(0, 0, 1, 0) = (1,−1, 1) and v2 = ϕ(1, 0, 0, 0) = (1, 2, 4).

(It is easy to check that

Im(ϕ) = {(x, y, z) : z = 2x+ y},
so any basis of this space gives a correct answer.)

[3 marks]. Standard exercise.
(b) To put ϕ into standard form, we start by extending the given basis of ker(ϕ) to a

basis of R4, for instance to the basis

B = ((0, 0, 1, 0), (1, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 0)).

We need to check that these are linearly independent, but for this choice of vectors,
this is immediately obvious.

[3 marks].
Now we need to take the two vectors of B which are not in the kernel and compute

their images:

ϕ(0, 0, 1, 0) = (1,−1, 1) and ϕ(1, 0, 0, 0) = (1, 2, 4).

We extend these two vectors to a basis of R3, e.g. by taking

C = ((1,−, 1, 1), (1, 2, 4), (1, 0, 0)).

Again we need to check that this really is a basis of R3. We could either check that
the three vectors are linearly independent. Alternatively, it is easy to check directly
that (1, 0, 0) is not in the image of ϕ.

[3 marks].
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It remains to compute the matrix A: we have

ϕ(0, 0, 1, 0) = (1,−1, 1) = 1 · (1,−1, 1) + 0 · (1, 2, 4) + 0 · (1, 0, 0),

ϕ(1, 0, 0, 0) = (1, 2, 4) = 0 · (1,−1, 1) + 1 · (1, 2, 4) + 0 · (1, 0, 0),

ϕ(1, 0, 0, 1) = (0, 0, 0) = 0 · (1,−1, 1) + 0 · (1, 2, 4) + 0 · (1, 0, 0),

ϕ(0, 1, 0, 0) = (0, 0, 0) = 0 · (1,−1, 1) + 0 · (1, 2, 4) + 0 · (1, 0, 0).

So we indeed have

A =

1 0 0 0
0 1 0 0
0 0 0 0

 ,

as required.
[3 marks]. Similar example seen on exercise sheet.

15 marks in total for Question 7
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8. The matrix of the quadratic form

q(x, y, z) = 4x2 − 4y2 + z2 + 6xy.

with respect to the standard bases is

A =

4 3 0
3 −4 0
0 0 1

 .

[3 marks].
We can find a basis with respect to which q is diagonal by finding a basis consisting of

orthogonal eigenvectors of A. The characteristic polynomial is

det(λI − A) =

∣∣∣∣∣∣
(λ− 4) −3 0

−3 (λ+ 4) 0
0 0 (λ− 1)

∣∣∣∣∣∣
= (λ− 1)

∣∣∣∣((λ− 4) −3
−3 (λ+ 4)

)∣∣∣∣
= (λ− 1)(λ2 − 16− 9)

= (λ− 1)(λ− 5)(λ+ 5),

so the eigenvalues are 5, −5 and 1. Solving the corresponding linear equations gives
eigenvectors (3, 1, 0), (1,−3, 0) and (0, 0, 1). The desired matrix P is thus given by

P =

3 1 0
1 −3 0
0 0 1

 .

The desired diagonal matrix is

D = P TAP =

50 0 0
0 −50 0
0 0 1

 .

[9 marks].
The diagonal matrix has full rank, so the rank of q is 3. The signature is the number

of positive entries minus the number of negative entries, and is thus 1. The surface is a
hyperboloid of one sheet.

[3 marks].
15 marks in total for Question 8 Seen somewhat similar in exercises.
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9. Let V = Pol3(R) be the vector space of polynomials with real coefficients of degree
at most three, and let

U := {(2a+ b)x3 + ax2 − (2a+ b)x− b : a, b ∈ R} and

W := {(b− a)x3 + cx2 + (a− b)x− c : a, b, c ∈ R}.
Let v1 = (2a1+b1)x

3+a1x
2−(2a1+b1)x−b1 and v2 = (2a2+b2)x

3+a2x
2−(2a2+b2)x−b)2

be arbitrary elements of U , and let µ, λ ∈ R. Setting a := λa1 + µa2 and b := λb1 + µb2, a
simple calculation shows

λv1 + λv2 = (2a+ b)x3 + ax2 − (2a+ b)x− b ∈ U.
So U is a subspace of V .

[4 marks].
By definition of U , (2x3 + x2 − 2x, x3 − x − 1) is a spanning set of U . Since the two

vectors are clearly linearly independent, it is also a basis. Thus the dimension of U is two.
Similarly, (x3 − x, x2 − 1) is a basis for W , and the dimension of W is also two.

(We mention here that U = {ax3 + bx2 + cx + d : a + c = 0 and a = 2b − d} and
W = {ax3 + bx2 + cx + d : a + c = 0 and b + d = 0}; for either space, any two linearly
independent vectors would provide an acceptable answer.)

[4 marks].
To find U ∩W , we need to decide when an arbitrary vector v of V belongs to both U

and W . There are several ways of doing this:

(a) Using the definition of U and W , we need to solve the equations

2a1 + b1 = b2 − a2

a1 = c2

−2a1 − b1 = a2 − b2

−b1 = −c2.
So we have

U ∩W = {3ax3 + ax2 − 3ax− a : a ∈ R}.
Thus 3x3 + x2 − 3x− 1 is a basis for U ∩W , and dim(U ∩W ) = 1.

(b) Similarly, we can use the bases for U and W and solve the equation

λ1(2x
3 + x2 − 2x) + µ1(x

3 − x− 1) = λ2(x
3 − x) + µ2(x

2 − 1).

Solving this equation, we get µ1 = µ2 = λ1, and λ2 = 2λ1 + µ1 = 3λ1. Again, we
obtain 3x3 + x2 − 3x− 1 as a basis for U ∩W .

(c) It is also sufficient to exhibit one single vector which belongs to both U and W ;
for example, the vector 3x3 + x2 − 3x − 1 (which corresponds to a = b = 1 in the
definition of U , and to a = 0, b = 3, c = 1 in the definition of W ). Since U 6= W ,
the dimension of U ∩W must then be 1.

[5 marks].
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We thus have dim(U + W ) = dimU + dimW − dim(U ∩W ) = 3. (Note that we have
U +W = {ax3 + bx2 + cx+ d : a+ c = 0}.) Since U ∩W 6= {0}, U +W is not the direct
sum of U and W .

[2 marks].
15 marks in total for Question 10 Seen similar in exercises
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10.

(a) Statements (i) and (iii) are true. Statement (ii) is false when the group is non-
abelian; an example is given e.g. by taking the symmetric group S3.

[3 marks]. From Lectures.
Similarly, a counterexample in S3 to (iv) is given by letting a be the permutation

which exchanges the first two elements, and b and c be the two cyclic permutations.
[3 marks]. Unseen.

(b) First of all, since A = AC, C must be the identity element of the group. So we can
fill in the corresponding column and row:

* A B C D E F
A B ? A E ? ?
B C ? B ? ? ?
C A B C D E F
D ? E D C ? ?
E ? ? E A ? ?
F ? ? F ? ? C

Next, note that BA = AAA = AB = C. Furthermore, BB = AAAA = AC = A.
* A B C D E F
A B C A E ? ?
B C A B ? ? ?
C A B C D E F
D ? E D C ? ?
E ? ? E A ? ?
F ? ? F ? ? C

Every line and column in the group table must contain each element. The first
row is only missing elements D and F ; however, the last column already contains
an F . So we can complete this row:

* A B C D E F
A B C A E F D
B C A B ? ? ?
C A B C D E F
D ? E D C ? ?
E ? ? E A ? ?
F ? ? F ? ? C
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Similarly, we can fill in the second row, which is still missing D, E and F .
* A B C D E F
A B C A E F D
B C A B F D E
C A B C D E F
D ? E D C ? ?
E ? ? E A ? ?
F ? ? F ? ? C

Continuing in this way, we can fill in the remaining entries:
* A B C D E F
A B C A E F D
B C A B F D E
C A B C D E F
D F E D C B A
E D F E A C B
F E D F B A C .

[6 marks]. Seen somewhat similar in exercises.
(c) The permutation group S3 has the same group table (letting C be the identity, A

and B the two cyclic permutations, and D,E and F the permutations which keep
one element fixed while switching the other two).

[3 marks]. Unseen.

15 marks in total for Question 10


