

THE UNIVERSITY of Liverpool

MAY EXAMINATIONS 2007

Bachelor of Arts: Year 2
Bachelor of Science: Year 2
Bachelor of Science: Year 3
Master of Mathematics: Year 2
Master of Mathematics: Year 3
Master of Physics: Year 2

CLASSICAL MECHANICS

TIME ALLOWED : Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

You may attempt all questions. All answers to Section A and the best THREE questions from Section B will be taken into account. Section A carries 55% of the available marks. The marks shown against the sections indicate their relative weights.

THE UNIVERSITY
 of Liverpool
 SECTION A

1. A particle moves in space in accordance with the equation

$$
x^{3}+\cos (2 y)-3 z=A t
$$

where A is a constant.
Given that, at time $t=0$, the position vector \mathbf{r} and the velocity \mathbf{v} of the particle are

$$
\mathbf{r}=B \mathbf{i}+3 \mathbf{k} \quad \text { and } \quad \mathbf{v}=-\mathbf{i}+\mathbf{j}-2 \mathbf{k},
$$

where B is a constant, find A and B.
2. A particle of mass m is dropped from the origin O with no initial speed in a medium with resistance. The coordinate axis x is chosen to be vertically downwards as shown in the Figure. The magnitude of the resisting force is assumed to be $F_{\text {res }}=m g \lambda v$, where g is the gravitational acceleration and λ is a constant. Show that the speed of the particle is given by

$$
v(t)=v_{l}\left(1-\mathrm{e}^{-g t / v_{l}}\right),
$$

clarifying the notation for v_{l}, and hence find its displacement $x(t)$.

[10 marks]
3. A rigid uniform lamina lies in the $x y$-plane and is bounded by the lines $x=2 a, y=x / 2+a$ and the coordinate axes x and y, as shown in the Figure.
Find the coordinates of the centre of mass of this lamina.
The lamina is now rotated through 2π about the line $y=-2 a / 9$. Show, by the use of the Theorem of Pappus-Guldin or otherwise, that the volume swept out is given by $6 \pi a^{3}$.

[9 marks]

THE UNIVERSITY
 of LIVERPOOL

4. (a) The vector $\boldsymbol{\omega}$ is said to be the angular velocity vector of a rigid body, if $\frac{d \mathbf{a}}{d t}=\boldsymbol{\omega} \times \mathbf{a}$ holds true for every vector a embedded into the body. Prove that the vector $\boldsymbol{\omega}$ defined in this way is uniquely determined.
[3 marks]
(b) A rigid uniform circular cone is attached at its vertex to a stationary fixed pivot at the origin O. The motion of the cone about O is constrained so that its axis of symmetry $O Z$ always remains in the $y z$-plane. At time t, θ is the angle between the vertically upwards y-axis and the cone's axis of symmetry $O Z$, and ϕ is the angle denoting the rotation about the $O Z$-axis.

Assuming that $O x y z$ form a right-handed frame, show that the angular velocity of the cone at time t is given by

$$
\boldsymbol{\omega}=\dot{\theta} \mathbf{i}+\dot{\phi} \cos \theta \mathbf{j}+\dot{\phi} \sin \theta \mathbf{k}
$$

where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ denote unit vectors along the axes x, y, z respectively.
[8 marks]
5. A rigid rectangular lamina of sides a and $3 a$ with centre C moves in the $x y$-plane at all times, as shown in the Figure. The velocities of the two corners A and B of the lamina are given to be \mathbf{v}_{A} and \mathbf{v}_{B} at time t, respectively. Find the velocity of the centre point C, i.e. \mathbf{v}_{C}, in terms of \mathbf{v}_{A} and \mathbf{v}_{B}.
Also show that the magnitude of the angular velocity of the lamina is given by $\left|\mathbf{v}_{A}-\mathbf{v}_{B}\right| /(\sqrt{10} a)$.

[9 marks]

THE UNIVERSITY
 of LIVERPOOL

6. A thin solid rod of mass M, length l and of uniform cross section is being lifted from the ground to a vertical position by the use of a thrust applied at one end A of the rod, as shown in the Figure. The magnitude of the thrust is $3 M g / 2$ and this thrust is in the vertically upwards y-direction. The other end of the rod is fixed at the point O, the origin of the $x y$-plane and the rod remains in the
 $x y$-plane at all times. The z-axis is oriented out of the page, so that $O x y z$ form a righthanded frame.

Given that the moment of inertia of the rod about the z-axis is I and that, at time t, the rod makes an angle ϕ with the horizontal x-axis, using the equation for rotational motion about the origin O, show that

$$
M g l \cos \phi=I \ddot{\phi} .
$$

Now, multiplying the above equation by $\dot{\phi}$, integrating with respect to time t and using the condition that at $t=0$ the rod is at rest horizontally, show that the magnitude of its angular velocity is $\sqrt{2 M g l / I}$ when the rod is vertically upwards.

THE UNIVERSITY
 of LIVERPOOL

 SECTION B

 SECTION B}
7. (a) Using the Figure on the right, find the unit vector $\mathbf{e}_{r}(t)$ in the radial direction and $\mathbf{e}_{\phi}(t)$ in the tangential direction, where t stands for time, in terms of the unit vectors \mathbf{i}, \mathbf{j} along the coordinate axes x, y respectively.
Hence, deduce that

$$
\dot{\mathbf{e}}_{r}=\dot{\phi} \mathbf{e}_{\phi}, \quad \dot{\mathbf{e}}_{\phi}=-\dot{\phi} \mathbf{e}_{r},
$$

and use these derivatives and the position vector

$$
\mathbf{r}(t)=r(t) \mathbf{e}_{r}(t)
$$

to find the components of the velocity vector $\mathbf{v}=\frac{d \mathbf{r}}{d t}$.
[7 marks]
(b) By differentiating the velocity vector \mathbf{v} with respect to time, the acceleration vector in polar coordinates can be found as

$$
\mathbf{a}=\left(\ddot{r}-r \dot{\phi}^{2}\right) \mathbf{e}_{r}+(2 \dot{r} \dot{\phi}+r \ddot{\phi}) \mathbf{e}_{\phi} .
$$

Consider a particle of mass m moving on the circle of centre $(R, 0)$ and radius R as shown in the Figure on the right. Given the equation of the circle is $r=2 R \cos \phi$, where r denotes the distance to the circle from the origin and
 ϕ is the angle between the horizontal x-axis and r, and that $a_{\phi}=0$ throughout the motion of the particle, show that

$$
\dot{\phi}=\frac{C}{r^{2}},
$$

where C is an arbitrary constant and hence find F_{r}, the only nonzero component of the force, acting on the particle at time t.

THE UNIVERSITY
 of LIVERPOOL

8. (a) A uniform solid paraboloid of mass M and of height $2 a$ is placed symmetrically about the z-axis. In terms of cyclindrical polar coordinates: $x=r \cos \phi, y=r \sin \phi, z=z$, the equation of the curved surface of this paraboloid is given by $z=2 r^{2} / a$, where $0 \leq z \leq 2 a, 0 \leq \phi \leq 2 \pi$.
Identify the principal axes of inertia for this paraboloid at the origin O.
Now, show that the volume of the paraboloid is πa^{3} and hence find the moment of inertia of the paraboloid about the z-axis, i.e. $I_{O z}$.

[8 marks]
(b) The Figure shows a rigid uniform lamina of mass M in the $x y$-plane in the shape of a quarter of a circle of radius a in the second quadrant. $O x, O y$ are the body axes and the axis $O z$ is perpendicular to the $x y$-plane, forming a right handed frame.
Obtain the Cartesian equations of the princi-
 pal axes of inertia at the origin O for the lamina by considering its symmetry properties.
Given that the inertia matrix at O with respect to $O x y z$ is

$$
\frac{M a^{2}}{4 \pi}\left(\begin{array}{ccc}
\pi & 2 & 0 \\
2 & \pi & 0 \\
0 & 0 & 2 \pi
\end{array}\right)
$$

write down column matrices representing vectors parallel to the principal axes you found and hence, obtain the principal moment of inertia corresponding to each principal axis.
[7 marks]

THE UNIVERSITY
 of LIVERPOOL

9. A man runs forward, balancing one end C of a long rigid rod of mass M and of uniform thickness in his hands. The end C moves parallel to the horizontal x-axis with constant acceleration of magnitude $g \cot \alpha, 0<\alpha<\pi / 2$. The centre of mass G of the rod is at a distance a away from C, and at time t, the rod makes an acute angle ϕ with the horizontal, as shown in the Figure. The motion of the rod is at all times in the $x y$-plane, where y-axis is
 vertically upwards. It is assumed that $O x y z$ form a right-handed frame.
Given that the rod has a principal axis of inertia through G perpendicular to the $x y$-plane with moment of inertia $M a^{2} / 3$ about this axis, use the theorem of parallel axis to find its moment of inertia about a parallel axis through C.

Hence, using the equation for the rotational motion of the rod about the point C, show that

$$
4 a \sin \alpha \ddot{\phi}=3 g \sin (\phi-\alpha) .
$$

Let $\phi(t)=\alpha+\varepsilon(t)$, where $|\varepsilon|$ is small. Substitute this into the above equation of motion and obtain an approximate solution to the resulting differential equation. Hence verify that the above equilibrium state is dynamically unstable.

THE UNIVERSITY
 of LIVERPOOL

10. The Figure shows a rigid uniform disc of centre C and radius a, rolling inside a fixed disc of centre O and radius $3 a$. The motion is planar at all times and two unit vectors \mathbf{m} and \mathbf{n} are introduced along the radial and tangential directions for convenience. At time t, θ is the angle between the upward vertical y-axis and $C P$, where P is a point on the inner circle's rim, and ϕ is the angle between the y-axis and $O B$, where B is the instantaneous point of contact of the two discs, as shown in the
 Figure.
Find the velocity of the centre point C in terms of a and ϕ, and specify its direction.
Assuming that there is no slipping between the discs, show that $2 \dot{\phi}=\dot{\theta}$ and hence apply the law of conservation of energy to further show that

$$
\begin{equation*}
3 a \dot{\phi}^{2}-2 g \cos \phi=\text { const. } \tag{15marks}
\end{equation*}
$$

11. At time t, the components of the angular velocity of a uniform rigid body along its principal axes of inertia $G X, G Y, G Z$ at its centre of mass G, are $\omega_{1}(t), \omega_{2}(t)$ and $\omega_{3}(t)$ respectively. The corresponding principal moments of inertia at G are $I, 2 I$ and I respectively.
If all the external forces on the body act at G, show that the angular momentum of the body at G is constant.
Hence use the Euler's form to show that the Euler equations for the three-dimensional motion of the body can be written as

$$
\dot{\omega}_{1}=s \omega_{3}, \quad \omega_{2}=s, \quad \dot{\omega}_{3}=-s \omega_{1}
$$

where s is a constant. Hence, find the differential equations ω_{1} and ω_{3} satisfy and solve them.
Now, consider the case when there exists a force of constant magnitude T on the $Y Z$-plane acting at a point P on $G Z$, a distance a away from G, making a constant angle ϕ with the $G Z$ axis, as shown in the Figure. Show that the component of the angular velocity ω_{3} can now be found as

$w_{3}(t)=C_{1} \cos \left(s t+C_{2}\right)+\frac{a T}{s I} \sin \phi, \quad C_{1}, C_{2}=$ const.
[15 marks]

THE UNIVERSITY
of LIVERPOOL

FORMULAE SHEET

Note: In the formulae listed below, C is a body point whereas O is a point fixed in space, and dot denotes the time derivative.
Centre of mass: $\quad \mathbf{r}_{G}=\frac{1}{V} \int_{V} \mathbf{r} d V$
Inertia matrix: $\quad \frac{M}{V} \int_{V}\left(\begin{array}{ccc}y^{2}+z^{2} & -x y & -x z \\ -x y & x^{2}+z^{2} & -y z \\ -x z & -y z & x^{2}+y^{2}\end{array}\right) d V$
Angular velocity: $\mathbf{v}_{P}=\mathbf{v}_{C}+\boldsymbol{\omega} \times \mathbf{C P}$
Angular momentum: $\quad \mathbf{L}_{C}=I_{1} \omega_{1} \mathbf{I}+I_{2} \omega_{2} \mathbf{J}+I_{3} \omega_{3} \mathbf{K}$

$$
\mathbf{L}_{O}=M\left(\mathbf{r}_{G} \times \mathbf{v}_{G}\right)+\mathbf{L}_{G}
$$

Kinetic energy: $\quad T_{C}=\frac{1}{2}\left(I_{1} \omega_{1}^{2}+I_{2} \omega_{2}^{2}+I_{3} \omega_{3}^{2}\right)$

$$
T_{O}=\frac{1}{2} M\left|\mathbf{v}_{G}\right|^{2}+T_{G}
$$

Equations of motion: $\quad \sum_{i} \mathbf{F}_{i}=M \dot{\mathbf{v}}_{G}$

$$
\begin{aligned}
\sum_{i} \mathbf{C P}_{i} \times \mathbf{F}_{i} & =M\left(\mathbf{C G} \times \dot{\mathbf{v}}_{C}\right)+\dot{\mathbf{L}}_{C} \\
\sum_{i} \mathbf{O P}_{i} \times \mathbf{F}_{i} & =\dot{\mathbf{L}}_{O}
\end{aligned}
$$

Euler form: $\quad \dot{\mathbf{L}}_{C}=\left[I_{1} \dot{\omega}_{1}-\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}\right] \mathbf{I}$

$$
\begin{aligned}
& +\left[I_{2} \dot{\omega}_{2}-\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1}\right] \mathbf{J} \\
& +\left[I_{3} \dot{\omega}_{3}-\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}\right] \mathbf{K}
\end{aligned}
$$

