SUMMER 2006 EXAMINATIONS

Bachelor of Science: Year 2
Master of Mathematics: Year 2
Master of Physics: Year 2
No qualification aimed for: Year 1
MECHANICS AND RELATIVITY

TIME ALLOWED : Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

You may attempt all questions. All answers to Section A and the best THREE questions from Section B will be taken into account. Section A carries 55% of the available marks. The marks shown against the sections indicate their relative weights.

THE UNIVERSITY
 of Liverpool
 SECTION A

1. A rigid uniform lamina, in the shape of a sector of a disc of mass M, lies in the $x y$-plane. The sector starts at $\theta=\pi / 4$ in the first quadrant and sweeps $\pi / 2$ with radius a.

Draw a clear diagram of the lamina.
Find, by the use of polar coordinates or otherwise, the coordinates of the centre of mass of the lamina.

The lamina is now rotated through 2π about the x-axis. Show, by the use of the Theorem of Pappus-Guldin or otherwise, that the volume swept out is given by $2 \sqrt{2} \pi a^{3} / 3$.
[2 marks]
Hint Centre of mass: $\quad \mathbf{r}_{G}=\frac{1}{A} \int_{A} \mathbf{r} d A$
2. A rigid uniform solid of revolution of mass M is placed symmetrically about the z-axis. As shown in the figure, the solid is enclosed by the cylinder, whose curved surface, in terms of cylindrical polar coordinates $x=$ $r \cos (\theta), y=r \sin (\theta)$, is given by the equation $r=a$. The solid is bounded above by a cone and below by the $x y$-plane. Again, in terms of cylindrical polar coordinates, the equation of the curved surface of the cone is given
 by $z=r$.

Identify the principal axes of inertia for this solid at the origin O, stating briefly your reasons.
[2 marks]
Using a multiple integral, show that the volume of the solid is $2 \pi a^{3} / 3$.
Hence, deduce that the moment of inertia of the solid about the z-axis, i.e. $I_{O z}$ is $3 M a^{2} / 5$.

Hint Inertia matrix: $\frac{M}{V} \int_{V}\left(\begin{array}{ccc}y^{2}+z^{2} & -x y & -x z \\ -x y & x^{2}+z^{2} & -y z \\ -x z & -y z & x^{2}+y^{2}\end{array}\right) d V$.

THE UNIVERSITY
 of LIVERPOOL

3. i. Define the angular velocity of a rigid uniform body in terms of an arbitrary body vector.
[2 marks]
ii. A rigid uniform circular disc is attached to a rigid uniform thin rod at its centre C, about which it rotates, as shown in the top figure. The rod swings freely, about its end A, a fixed point along the x-axis, remaining in the $x y$-plane at all times. The choice of the fixed coordinate axes $O x y z$, forming a righthanded frame, is also shown in the top figure.
 $\hat{\mathbf{n}}$ is a unit vector in the $x y$-plane and ϕ is the angle between the x-axis and the plane of the disc, at time t. $C X, C Y, C Z$ are mutually perpendicular body axes, again forming a right-handed frame. A top-on view of the disc is shown in the bottom figure, showing $C X, C Y$ lying on the disc. As shown, θ is the angle between $\hat{\mathbf{n}}$ and $C Y$ at time t.

Identify the unit vector along the horizontal axis in the bottom figure.
[1 mark]
Hence, show that, at time t the angular velocity of the disc is given by
$\boldsymbol{\omega}=\dot{\phi} \cos (\theta) \mathbf{I}-\dot{\phi} \sin (\theta) \mathbf{J}+\dot{\theta} \mathbf{K}$,
where \mathbf{I}, \mathbf{J} are unit vectors along $C X, C Y$ and \mathbf{K} is a unit vector along the axis of the $\operatorname{rod} C Z$.
[6 marks]

THE UNIVERSITY
 of LIVERPOOL

4. A rigid uniform disc of radius a and mass M is rolling down without slipping on a plane which is inclined at an angle α to the horizontal, as shown in the figure. B is the instantaneous point of contact between the disc and the inclined plane, and C is the centre of the disc, which moves with constant speed v in the positive x-direction. The choice of the coordinate axes, forming a right handed frame, is also shown in the figure. The mo-
 tion of the disc is restricted to the $x y$-plane at all times. θ is the angle between $C y$ and CP, were P is a fixed point on the rim of the disc.
In addition to frictional, normal and gravitational forces, a thrust T, parallel to the positive x-axis, is applied at point A, as shown.
Show that the angular momentum of the disc about the point B is

$$
\mathbf{L}_{B}=-\left(3 M a^{2} \dot{\theta} / 2\right) \mathbf{k}
$$

Hence, using the equation for rotational motion about B and the no-slip condition, deduce that
$\frac{2}{3} \frac{M g \sin (\alpha)+2 T}{M a}=\ddot{\theta}$.
Finally, show that the displacement of the disc is given by
$x(t)=\frac{1}{3} \frac{M g \sin (\alpha)+2 T}{M a} t^{2}$,
given that the disc starts rolling down from rest from the origin O.
[4 marks]
Hint
Theorem of Parallel Axes: $\quad I_{\|}=I_{G}+M d^{2}$
Equations of motion: $\quad \sum_{i} \mathbf{C P}_{i} \times \mathbf{F}_{i}=M\left(\mathbf{C G} \times \dot{\mathbf{v}}_{C}\right)+\dot{\mathbf{L}}_{C}$
Angular velocity: $\mathbf{v}_{P}=\mathbf{v}_{C}+\boldsymbol{\omega} \times \mathbf{C P}$

THE UNIVERSITY
 of LIVERPOOL

5. The figure shows a rigid uniform disc of mass M and radius a, smoothly hinged at a point O, a distance b away from the centre of the disc C. The disc rotates about this point, remaining in the $x y$-plane at all times. $O x$ is the horizontal axis, $O y$ is vertically downwards and $O x y z$ forms a fixed right-handed frame. $O X Y Z$, the mutually perpendicular body axes, also form a right-handed frame. At time t, θ
 is the angle between $O X$ and $O x$.
The disc is released at time $t=0$, from $\theta=0$ with $\dot{\theta}=\Omega$.
Show, by applying the law of conservation of energy, that
$\dot{\theta}=\sqrt{\Omega^{2}+\frac{2 M g b}{I_{O z}} \sin (\theta)}$,
where $I_{O z}$ is the moment of inertia of the disc at O about the z-axis.
[9 marks]
Hint Kinetic energy: $\quad T_{0}=\frac{1}{2} M\left|\mathbf{v}_{0}\right|^{2}+\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{L}_{0}$
6. Within the theory of special relativity, the y - and z-axes of an inertial frame S are parallel to the corresponding axes of another inertial frame S^{\prime}. The x-axes of S and S^{\prime} are collinear and S^{\prime} moves with constant velocity v relative to S.
i. With reference to S and S^{\prime}, state briefly the Principle of Relativity and the fundamental postulate concerning the velocity of light c.
[4 marks]
ii. Two events which take place at different spatial locations in S are observed from S^{\prime} to occur at the same time t^{\prime} relative to S^{\prime}. Show that the events cannot occur simultaneously with respect to S.
[4 marks]
Hint
Lorentz transformation:
$\Delta x^{\prime}=\gamma(\Delta x-v \Delta t), \Delta t^{\prime}=\gamma\left(\Delta t-v \Delta x / c^{2}\right)$ where $\gamma=1 / \sqrt{1-v^{2} / c^{2}}$.

THE UNIVERSITY
 of LIVERPOOL

SECTION B

7. The diagram shows a rigid uniform lamina of mass M in the $x y$-plane in the shape of a triangle with sides $3 a$ along the coordinate axes, as shown in the figure. $O x, O y$ are the body axes and the axis $O z$ is perpendicular to the $x y$-plane, which form a right handed frame.

Obtain the Cartesian equations of the principal axes
 of inertia at the origin O for the lamina by considering its symmetry properties.
[2 marks]

Show that the inertia matrix at O with respect to $O x y z$ is given by

$$
\frac{3 M a^{2}}{4}\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & 0 \\
0 & 0 & 4
\end{array}\right) .
$$

[7 marks]
Write down column matrices representing vectors parallel to the principal axes you found. Hence, obtain the principal moment of inertia corresponding to each principal axis.
[6 marks]
Hint You may refer to the inertia matrix given in question 2.

THE UNIVERSITY
 of LIVERPOOL

8. The figure shows the vertical cross-section of the top of a railway carriage which has a horizontal roof with a square trapdoor of mass M, side length a and uniform thickness, hinged smoothly to the roof at C and swings freely in
 the $x y$-plane. The choice of the coordinate axes is also shown in the figure.
Assuming that the carriage is moving with constant acceleration f in the positive x-direction, use the equation of motion involving the angular momentum of the trapdoor about the point C to show that:

$$
I \ddot{\theta}=-\frac{M a f}{2} \sin (\theta)-\frac{M g a}{2} \cos (\theta)
$$

where θ is the angle between the trapdoor and its closed position at time t, and I is its moment of inertia about the horizontal axis through C.
[6 marks]
Given that, at time $t=0$, the trapdoor was at rest relative to the carriage roof with $\theta=\pi / 2$, deduce from the above equation of motion that the trapdoor will close.
[2 marks]
Now, integrate the above equation of motion with respect to time t and hence show that when the trapdoor closes, the magnitude of its angular velocity will be

$$
\sqrt{\frac{M a(f+g)}{I}} .
$$

[7 marks]
Hint
Equations of motion: $\sum_{i} \mathbf{C P}_{i} \times \mathbf{F}_{i}=M\left(\mathbf{C G} \times \dot{\mathbf{v}}_{C}\right)+\dot{\mathbf{L}}_{C}$

THE UNIVERSITY
 of LIVERPOOL

9. At time t, the components of the angular velocity of a uniform rigid body along its principal axes of inertia $G X, G Y, G Z$ at its centre of mass G, are $\omega_{1}(t), \omega_{2}(t)$ and $\omega_{3}(t)$ respectively. The corresponding principal moments of inertia at G are $I, 2 I$ and αI respectively, where α is a constant parameter.
If all the external forces on the body act at G, show that the angular momentum of the body at G is constant.
[2 marks]
Hence use the Euler's form to verify that the Euler equations for the three-dimensional motion of the body can be written as

$$
\dot{\omega}_{1}=(2-\alpha) \omega_{2} \omega_{3}, \quad 2 \dot{\omega}_{2}=(\alpha-1) \omega_{3} \omega_{1}, \quad \alpha \dot{\omega}_{3}=-\omega_{1} \omega_{2} .
$$

[2 marks]
Given that $\alpha=1$, show, by using the Euler's equations of motion, that

$$
\omega_{1} \dot{\omega}_{1}+\omega_{3} \dot{\omega}_{3}=0
$$

[2 marks]
By integrating this equation with respect to time show that the magnitude of the angular velocity is a constant of the motion.
[3 marks]
Now, assuming that α can take all values $\alpha>0$, let $\omega_{1}=\varepsilon_{1}(t), \omega_{2}=$ $s+\varepsilon_{2}(t)$ and $\omega_{3}=\varepsilon_{3}(t)$, where s is constant and $\varepsilon_{i}, i=1,2,3$ are small perturbations from equilibrium at time t. Deduce that the equilibrium state is stable for $\alpha<2$ and unstable for $\alpha>2$.
[6 marks]
Hint
Equations of motion: $\sum_{i} \mathbf{C P}_{i} \times \mathbf{F}_{i}=M\left(\mathbf{C G} \times \dot{\mathbf{v}}_{C}\right)+\dot{\mathbf{L}}_{C}$
Euler form:
$\dot{\mathbf{L}}_{C}=\left[I_{1} \dot{\omega}_{1}-\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3}\right] \mathbf{I}+\left[I_{2} \dot{\omega}_{2}-\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1}\right] \mathbf{J}+\left[I_{3} \dot{\omega}_{3}-\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}\right] \mathbf{K}$

THE UNIVERSITY
 of LIVERPOOL

10. A symmetric spinning top moves under gravity about a stationary fixed pivot O on its axis of symmetry. The centre of mass G of the top lies on this symmetry axis at a distance a from O.

Draw a clearly labelled figure to define the conventional Euler angles θ, ϕ and $\overline{\psi \text { which specify }}$ the position of the top relative to fixed space axes $O x y z$, where $O z$ is vertically upwards. What do the time derivatives of Euler angles characterise?

It may be assumed that the mass and the principal moments of inertia of the top are such that its motion at time t is given by the equations:

$$
\begin{aligned}
\dot{\psi}+\dot{\phi} \cos (\theta) & =s, \\
s \cos (\theta)+3 \dot{\phi} \sin ^{2}(\theta) & =A, \\
\dot{\theta}^{2}+\dot{\phi}^{2} \sin ^{2}(\theta)+2 a \cos (\theta) & =B,
\end{aligned}
$$

where $s \neq 0, A$ and B are constants of motion.
The above equations of motion allow existence of a state of dynamical equilibrium in which the top precesses indefinitely, with $O G$ rotating about $O z$ with constant angular velocity Ω, and is inclined at a constant angle α to $O z$, where $0<\alpha<\pi$. Verify this, explaining briefly.
[2 marks]
Now, by differentiating equations (ii) and (iii) with respect to time, eliminate the terms involving $\ddot{\phi}$, and use equation (i) to show that

$$
\ddot{\theta}=\left[\frac{2}{3} \cos (\theta) \dot{\phi}^{2}-\frac{1}{3} \dot{\psi} \dot{\phi}+a\right] \sin (\theta) .
$$

[7 marks]
Finally, find the requirement for the top to precess steadily.
[3 marks]

THE UNIVERSITY of LIVERPOOL

11. Explain briefly what is meant by an inertial frame of reference.

Within the context of the theory of special relativity, the inertial frame S^{\prime} moves parallel to the x-axis of the inertial frame S with constant velocity v. The frames S and S^{\prime} are in "standard configuration". Explain what this means.
[4 marks]
An observer in S sees a fast moving vehicle travelling along the x-axis with constant velocity u and notes that at time $t=0$ it is at a distance d away from the origin of S. Another observer, moving with S^{\prime}, notes that at time $t^{\prime}=T$ in S the vehicle is at distance $3 d$ from the origin of S^{\prime}.

Show that

$$
T=\frac{d}{u-v}\left[3-3 \frac{u v}{c^{2}}-\sqrt{1-\frac{v^{2}}{c^{2}}}\right] .
$$

[8 marks]
Hint You may refer to Lorentz transformation given in question 6.

