THE UNIVERSITY of LIVERPOOL

JANUARY 2006 EXAMINATIONS

Bachelor of Science : Year 2
Master of Mathematics : Year 2

VECTOR CALCULUS WITH APPLICATIONS

TIME ALLOWED : Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

Candidates should attempt all questions in Section A and three questions in Section B. Section A carries 55% of the available marks. A formula sheet is attached at the end of the paper.

THE UNIVERSITY of LIVERPOOL

SECTIONA

1. Describe the following loci and find the corresponding equations in spherical coordinates (ρ, θ, ϕ), where $\rho \geq 0,0 \leq \theta<2 \pi, 0 \leq \phi \leq \pi$:
(a) $x^{2}+y^{2}+z^{2}=4 x$; [3 marks]
(b) $x^{2}+y^{2}=1, z=\sqrt{x^{2}+y^{2}}$;
[3 marks]
(c) $y=x, z=0$.
[3 marks]
2. Find the Cartesian equations of (a) the tangent plane and (b) the normal line to the surface $x^{2}+y^{2}-x y z=7$ at the point $P(2,3,1)$.
[8 marks]
3. Show that the vector field

$$
\mathbf{F}=y z e^{x y z} \mathbf{i}+x z e^{x y z} \mathbf{j}+x y e^{x y z} \mathbf{k}
$$

is conservative. Find a scalar function $\varphi(x, y, z)$ such that $\mathbf{F}=\operatorname{grad} \varphi$.
[7 marks]
4. Given that $r=\sqrt{x^{2}+y^{2}}$ and $f=f(r)$, show that

$$
\operatorname{div}\left(\frac{f(r)}{r^{2}}(x \mathbf{i}+y \mathbf{j})\right)=\frac{f^{\prime}(r)}{r}, \quad r \neq 0
$$

[6 marks]
5. A position-dependent force $\mathbf{F}(x, y, z)=x \mathbf{i}-z \mathbf{j}-x y \mathbf{k}$ Newtons acts on a particle which, at time t seconds, has position vector \mathbf{r} metres, where $\mathbf{r}=\cos t \mathbf{i}+\sin t \mathbf{j}+2 t \mathbf{k}$. Find the work done by the force as the particle moves from the point $A(1,0,0)$ to the point $B(-1,0,6 \pi)$.

THE UNIVERSITY of LIVERPOOL

6. At time t the velocity \mathbf{V} of a fluid at the point (x, y) is given by

$$
\mathbf{V}=-\alpha x^{2} t \mathbf{i}+\beta y \mathbf{t} \mathbf{j}
$$

where α and β are dimensional constants.
(a) Find the parametric equations of the curve traced out by the fluid particle which was initially at the point $2 \mathbf{i}+\mathbf{j}$. Hence, by eliminating the parameter time, write down the equation of the pathline for this particle.
(b) Find the equation that represents the family of streamlines.
[3 marks]
7. A solid G occupies the region which lies between the plane $z=x$ and the surface $z=x^{2}$, and the planes $y=0$ and $y=3$. The density $\rho(x, y, z)$ of the solid is given by

$$
\rho(x, y, z)=\alpha(1-z),
$$

where α is a dimensional constant.
(i) Find the mass M of the solid G.
(ii) Find the volume V of the solid G.

THE UNIVERSITY of LIVERPOOL

SECTIONB

8. The velocity V and the density ρ of a fluid at a point (x, y, z) and time t are given by

$$
\mathbf{V}=x t^{2} \mathbf{i}+2 y \cos t \mathbf{j}-\left(2 z t^{2}-5 y^{2} \sin t\right) \mathbf{k}, \quad \rho=x f(t)
$$

where $f(t)$ is an unknown function. Given that the equation of continuity is satisfied, that is,

$$
\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho \mathbf{V})=0
$$

and that $f(0)=\rho_{0}$, find $f(t)$.

Show that the continuity equation can be written in the form

$$
\frac{D \rho}{D t}+\rho \operatorname{div} \mathbf{V}=0
$$

[Hint: You may assume the equality $\operatorname{div}(\varphi \mathbf{F})=\varphi \operatorname{div} \mathbf{F}+\mathbf{F} \cdot \operatorname{grad} \varphi$.] Hence, or otherwise, evaluate the convective derivative $\frac{D \rho}{D t}$.

Find $\frac{D \mathbf{V}}{D t}$, the acceleration field.
9. State the Divergence Theorem for a vector field \mathbf{F} defined for a solid G enclosed by a surface σ.

Evaluate by direct integration the integral $\iint_{\sigma} \mathbf{F} \cdot \mathbf{n} \mathrm{dS}$ where

$$
\mathbf{F}=x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k},
$$

\mathbf{n} is the outward unit normal, and σ is the surface of the region cut from the first octant $x \geq 0, y \geq 0, z \geq 0$ by the cylindrical surface $x^{2}+y^{2}=1$ and the plane $z=4$.

Verify your result using the Divergence Theorem.

THE UNIVERSITY of LIVERPOOL

10. State Stokes' Theorem for a vector field \mathbf{F} defined on a surface σ bounded by a closed curve C.

Evaluate by direct integration the integral $\iint_{\sigma}(\operatorname{curlF}) \cdot \mathbf{n} d S$, where

$$
\mathbf{F}=x y \mathbf{i}+y z \mathbf{j}+x z \mathbf{k},
$$

and σ is the surface $z=1-x^{2}$ which lies between the planes $x=0$, $x=1$ and $y=-2, y=2$, and is oriented by upward unit normals. Verify your result using Stokes' Theorem.
11. Consider a two-dimensional fluid flow whose velocity

$$
\mathbf{V}(x, y)=u(x, y) \mathbf{i}+v(x, y) \mathbf{j}
$$

is given in terms of a potential function φ by the equation $\mathbf{V}=\operatorname{grad} \varphi$. Show that if the flow is incompressible then the velocity potential φ satisfies the Laplace equation $\nabla^{2} \varphi=0$.
[3 marks]
A river flows across the $x y$-plane in the positive direction of the x-axis and around a circular rock of radius 1 centred at the origin. The flow is described by the velocity potential φ which outside the circular rock is given by

$$
\varphi(x, y)=x+\frac{x}{x^{2}+y^{2}} \text { for } x^{2}+y^{2} \geq 1
$$

Find the velocity \mathbf{V} of the flow. Hence show that $\operatorname{div} \mathbf{V}=0$.

Write down the expressions for the velocity components in terms of a stream function $\psi(x, y)$. Find the corresponding stream function ψ.
[5 marks]
Show that the velocity \mathbf{V} of the flow is tangent to the circle $x^{2}+y^{2}=1$. This means that no water crosses the circle. The water on the outside must therefore all flow around the circle.

THE UNIVERSITY of LIVERPOOL

12. Derive the equation of motion for an inviscid fluid.

Show that in the static case $(\mathbf{V}=\mathbf{0})$, the equation of motion becomes

$$
\begin{equation*}
\mathbf{F}=\frac{1}{\rho} \operatorname{grad} p, \tag{1}
\end{equation*}
$$

where \mathbf{F} is the body force acting on the fluid, p is the pressure, and ρ is the fluid density.

Consider a column of incompressible fluid oriented vertically parallel to the z-axis. Assuming that the only external force acting on the fluid is the downward uniform gravitational force \mathbf{F}, apply equation (1) to show that

$$
p=p_{0}-\rho g z,
$$

where g is the acceleration due to gravity, and p_{0} is a constant.
[5 marks]

THE UNIVERSITY of LIVERPOOL

Formula Sheet

Spherical Polar Coordinates (ρ, θ, ϕ)

$$
\begin{gathered}
\operatorname{grad} G=\frac{\partial G}{\partial \rho} \mathbf{e}_{\rho}+\frac{1}{\rho \sin \phi} \frac{\partial G}{\partial \theta} \mathbf{e}_{\theta}+\frac{1}{\rho} \frac{\partial G}{\partial \phi} \mathbf{e}_{\phi} \\
\operatorname{div} \mathbf{F}=\frac{1}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} F_{\rho}\right)+\frac{1}{\rho \sin \phi} \frac{\partial}{\partial \theta}\left(F_{\theta}\right)+\frac{1}{\rho \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi F_{\phi}\right) \\
\operatorname{curl} \mathbf{F}=\frac{1}{\rho^{2} \sin \phi}\left|\begin{array}{ccc}
\mathbf{e}_{\rho} & \rho \sin \phi \mathbf{e}_{\theta} & \rho \mathbf{e}_{\phi} \\
\frac{\partial}{\partial \rho} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
F_{\rho} & \rho \sin \phi F_{\theta} & \rho F_{\phi}
\end{array}\right|
\end{gathered}
$$

Cylindrical Polar Coordinates (r, θ, z)

$$
\begin{gathered}
\operatorname{grad} G=\frac{\partial G}{\partial r} \mathbf{e}_{r}+\frac{1}{r} \frac{\partial G}{\partial \theta} \mathbf{e}_{\theta}+\frac{\partial G}{\partial z} \mathbf{e}_{z} \\
\operatorname{div} \mathbf{F}=\frac{1}{r} \frac{\partial}{\partial r}\left(r F_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(F_{\theta}\right)+\frac{\partial}{\partial z}\left(F_{z}\right) \\
\operatorname{curl} \mathbf{F}=\frac{1}{r}\left|\begin{array}{ccc}
\mathbf{e}_{r} & r \mathbf{e}_{\theta} & \mathbf{e}_{z} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
F_{r} & r F_{\theta} & F_{z}
\end{array}\right|
\end{gathered}
$$

Equation of motion of an inviscid fluid

$$
\frac{\partial \mathbf{V}}{\partial t}+\frac{1}{2} \operatorname{grad}\left(\mathbf{V}^{2}\right)-\mathbf{V} \times \operatorname{curl} \mathbf{V}=\mathbf{F}-\frac{1}{\rho} \operatorname{grad} p
$$

or

$$
\frac{\partial \mathbf{V}}{\partial t}+(\mathbf{V} \cdot \operatorname{grad}) \mathbf{V}=\mathbf{F}-\frac{1}{\rho} \operatorname{grad} p
$$

