THE UNIVERSITY of LIVERPOOL

SUMMER 2003 EXAMINATIONS

Bachelor of Arts: Year 2
Bachelor of Science: Year 1
Bachelor of Science: Year 2
Bachelor of Science: Year 3
Master of Mathematics : Year 2
Master of Physics : Year 2
Master of Physics: Year 4
\title{ INTRODUCTION TO THE METHODS OF APPLIED MATHEMATICS }

TIME ALLOWED : Two hours and a half

INSTRUCTIONS TO CANDIDATES

Abstract

Answer ALL questions in Section A and THREE questions from Section B. The marks shown against the questions, or parts of questions, indicate their relative weights. The total of marks available in Section A is 55 .

SECTION A

1. Find the general solution of the differential equation

$$
\frac{d y}{d x}=\frac{y^{2}}{x^{2}+4 x+3}
$$

putting your answer in the form $y=f(x)$.
2. Solve the initial value problem

$$
x y \frac{d y}{d x}=3 x^{2}+y^{2} ; \quad y(1)=2
$$

3. Solve the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=2 x-y \\
& \frac{d y}{d t}=-4 x+2 y
\end{aligned}
$$

given the initial conditions $x(0)=2, y(0)=1$.
4. The Laplace transform of the function $f(t)$ is defined by

$$
\mathcal{L}\{f(t)\}=F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Show that
(i)

$$
\mathcal{L}\{t f(t)\}=-\frac{d}{d s} F(s),
$$

(ii)

$$
\mathcal{L}\left\{e^{k t}\right\}=\frac{1}{s-k}
$$

Hence or otherwise find

$$
\mathcal{L}^{-1}\left\{(s+2)^{-3}\right\} .
$$

5. The function $u(x, y)$ satisfies the partial differential equation

$$
\frac{\partial u}{\partial x}+4 x y \frac{\partial u}{\partial y}=0 .
$$

(i) Find the characteristic curves of this equation.
(ii) Hence find the solution to the boundary value problem

$$
u=\sin y \quad \text { when } \quad x=0 .
$$

6. (i) State the definition of the Heaviside function $H(t)$, and find an expression for the Laplace transform

$$
\mathcal{L}\{H(t-a) f(t-a)\}
$$

[3 marks]
in terms of $\mathcal{L}\{f(t)\}$.
(ii) By using the Laplace transform or otherwise, solve the differential equation

$$
\frac{d y}{d t}+3 y=2 H(t-2)
$$

with the initial condition $y(0)=1$. Sketch the solution.
[5 marks]
7. (i) Write down the Cauchy-Riemann equations connecting a function $u(x, y)$ to its conjugate harmonic function $v(x, y)$.
Show that the function

$$
u(x, y)=4 \tan ^{-1}\left(\frac{y}{x}\right)
$$

satisfies the two-dimensional Laplace's equation.
Hint: Remember $\frac{d}{d t} \tan ^{-1} t=1 /\left(t^{2}+1\right)$.
(ii) Find $v(x, y)$, the conjugate harmonic function corresponding to $u(x, y)$ in part (i).
[5 marks]

SECTION B

8. The equation

$$
\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}-2 y=e^{-t}
$$

has the initial conditions: $y(0)=2, y^{\prime}(0)=0$.
(i) Find the solution of this problem without using the Laplace transform.
[7 marks]
(ii) Laplace transform the equation and find the value of $Y(s)$, the Laplace transform of $y(t)$. Hence find the solution $y(t)$, stating explicitly each inverse Laplace transform you use.
9. Find the general solution of the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=2 x-2 y+1+e^{t} \\
& \frac{d y}{d t}=-8 x+2 y+e^{t}
\end{aligned}
$$

[15 marks]
10.(i) Sketch the graph of the function $g(t)$ where:

$$
g(t)=2-2|\cos t|
$$

What is its period?
[5 marks]
(ii) Calculate the Fourier series for $g(t)$.

Hint: Remember that $\cos A \cos B=\frac{1}{2} \cos (A+B)+\frac{1}{2} \cos (A-B)$ for any A and B.
[10 marks]
11. A function $u(x, y)$ satisfies Laplace's equation in the rectangle $-a<x<a$, $0<y<b$ together with the homogeneous boundary conditions

$$
u(x, 0)=u(x, b)=0, \quad-a<x<a
$$

on the boundaries $y=0$ and $y=b$.
(i) Show that the separable solutions of this boundary value problem are

$$
u_{n}=\sin \left(\frac{n \pi y}{b}\right)\left[C_{n} \cosh \left(\frac{n \pi x}{b}\right)+D_{n} \sinh \left(\frac{n \pi x}{b}\right)\right]
$$

where n is an integer and C_{n} and D_{n} are constants.
(ii) Find the solution to this problem, i.e. find C_{n} and D_{n}, given that $u(x, y)$ satisfies the boundary conditions

$$
u(-a, y)=-1, \quad u(a, y)=1, \quad 0<y<b
$$

on $x=-a$ and $x=a$.
12. The temperature $u(\theta, t)$ in a metal ring obeys the heat equation

$$
\frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial \theta^{2}},
$$

where the angular coordinate θ will be chosen to run from $-\pi$ to π.
(i) By considering the separable solutions of the heat equation show that the general solution to the heat equation in the ring can be written as

$$
u(\theta, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} e^{-\kappa n^{2} t}\left[a_{n} \cos n \theta+b_{n} \sin n \theta\right]
$$

where n is an integer and a_{n} and b_{n} are constants.
(i) Initially the temperature is $100^{\circ} \mathrm{C}$ for $-\pi / 4<\theta<\pi / 4$ and $0^{\circ} \mathrm{C}$ in the rest of the ring. Find the temperature distribution at later times.

