All problems are similar to homework and class examples, except where stated explicitly as bookwork.

1. Question Find the general solutions of the differential equations:

$$
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+(1+x) y^{2}=2 x^{3} y^{2}
$$

Answer This is separable:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x^{3}-x-1}{x^{2}} y^{2} .
$$

Separating the variables gives

$$
\int \frac{\mathrm{d} y}{y^{2}}=\int\left(2 x-\frac{1}{x}-\frac{1}{x^{2}}\right) \mathrm{d} x=-\frac{1}{y}=x^{2}-\ln |x|+\frac{1}{x}+C
$$

So the solution is

$$
y=-\left(x^{2}-\ln |x|+1 / x+C\right)^{-1}
$$

Question

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(1+x^{2}\right) y=2 x^{3}
$$

Answer This equation is linear

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{1+x^{2}}{x} y=2 x^{2}
$$

The integrating factor is

$$
\exp \left(\int\left(x+\frac{1}{x}\right) \mathrm{d} x\right)=x e^{x^{2} / 2}
$$

(need only one solution so no arbitrary constant needed), multiplying through by it gives

$$
x e^{x^{2} / 2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(1+x^{2}\right) e^{x^{2} / 2} y=\left(x e^{x^{2} / 2} y\right)^{\prime}=2 x^{3} e^{x^{2} / 2}
$$

Integrating this equation gives

$$
x e^{x^{2} / 2} y=\int 2 x^{3} e^{x^{2} / 2} \mathrm{~d} x=4 \int\left(x^{2} / 2\right) e^{x^{2} / 2} \mathrm{~d}\left(x^{2} / 2\right)=4\left(x^{2} / 2-1\right) e^{x^{2} / 2}+C
$$

hence

$$
y=2 x-\frac{4}{x}+\frac{C}{x} e^{-x^{2} / 2}
$$

2. Question Solve the initial value problem:

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+11 \frac{\mathrm{~d} y}{\mathrm{~d} x}+28 y=28 x^{2}+22 x+30, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

Answer The solution $y=e^{m x}$ will satisfy the homogeneous equation if $m^{2}+11 m+28=0$. This has roots $m=-4$ and $m=-7$ so the Complementary Function is $A e^{-4 x}+B e^{-7 x}$. To find the particular integral we try $y=\alpha x^{2}+\beta x+\gamma$. We find

$$
2 \alpha+11(2 \alpha x+\beta)+28\left(\alpha x^{2}+\beta x+\gamma\right)=28 x^{2}+22 x+30
$$

This is satisfied if $\alpha=1,22 \alpha+28 \beta=22$, so that $\beta=0$ and $2 \alpha+11 \beta+28 \gamma=30$, so that $\gamma=1$. The general solution is then

$$
y=A e^{-4 x}+B e^{-7 x}+x^{2}+1
$$

From the initial conditions we get

$$
y(0)=A+B+1=0, \quad y^{\prime}(0)=1=-4 A-7 B
$$

Therefore $A=-2$ and $B=1$.
The solution is therefore $y=-2 e^{-4 x}+e^{-7 x}+x^{2}+1$.

$$
\left(x^{2}+x\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-\left(x^{2}-2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-(x+2) y=0 .
$$

Find another linearly independent solution to this equation.
Answer Substituting $1 / x$ in to the equation gives $\left(x^{2}+x\right)\left(2 / x^{3}\right)-\left(x^{2}-2\right)\left(-1 / x^{2}\right)-(x+2)(1 / x)=2 x^{-1}+$ $2 x^{-2}+1-2 x^{-2}-1-2 x^{-1}=0$. Try $y=u / x$. We get

$$
\left(x^{2}+x\right)\left[u^{\prime \prime} / x-2 u^{\prime} / x^{2}+2 u / x^{3}\right]-\left(x^{2}-2\right)\left[u^{\prime} / x-u / x^{2}\right]-(x+2) u / x=0 .
$$

This simplifies to

$$
(x+1) u^{\prime \prime}=(x+2) u^{\prime}
$$

so that

$$
\begin{gathered}
\int \frac{\mathrm{d} u^{\prime}}{u^{\prime}}=\int \frac{x+2}{x+1} \mathrm{~d} x \\
\ln \left|u^{\prime}\right|=x+\ln |x+1|+C_{1} \quad \text { or } \quad u^{\prime}=C_{2}(x+1) e^{x}
\end{gathered}
$$

Therefore

$$
u=C_{2} \int(x+1) e^{x} \mathrm{~d} x=C_{2} x e^{x}+C_{3} .
$$

So the general solution is $y=u / x=C_{2} e^{x}+C_{3} / x$, we recognize the second term as the solution $y_{1}=1 / x$ we already know, so the other linearly independent solution can be chosen $y_{2}=e^{x}$.
4. Question Given that λ is a positive constant, find the eigenvalues λ_{n} and eigenfunctions $\phi_{n}(x)$ for the boundary value problem:

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y(3)=0 .
$$

Answer For $\lambda=\omega^{2}>0$, the general solution is $y=A \cos (\omega x)+B \sin (\omega x)$. From boundary conditions, $y^{\prime}(0)=\omega B=0$ and $y(3)=A \cos (3 \omega)+B \sin (3 \omega)$. Obviously $B=0$ as $\omega>0$ by assumption. Then $A=0$ unless $\cos (3 \omega)=0$, that is $\omega=\omega_{n}=(\pi / 2+\pi n) / 3$. The eigenvalues are therefore $\lambda=\lambda_{n}=\omega_{n}^{2}=(\pi / 3)^{2}(n+1 / 2)^{2}$ and the eigenfunctions $\phi_{n}(x)=\cos ((n+1 / 2) \pi x / 3)$.
Question Show that these eigenfunctions satisfy the orthogonality relation:

$$
\int_{0}^{3} \phi_{n}(x) \phi_{m}(x) \mathrm{d} x=0 \quad \text { for } \quad n \neq m
$$

Answer

$$
\begin{gathered}
\int_{0}^{3} \phi_{n}(x) \phi_{m}(x) \mathrm{d} x=\int_{0}^{3} \cos [(n+1 / 2) \pi x / 3] \cos [(m+1 / 2) \pi x / 3] \mathrm{d} x \\
=\frac{1}{2} \int_{0}^{3}[\cos [(n-m) \pi x / 3]+\cos [(n+m+1) \pi x / 3]] \mathrm{d} x \\
=\frac{3}{2 \pi}\left[\frac{\sin [(n-m) \pi x / 3]}{n-m}+\frac{\sin [(n+m+1) \pi x / 3]}{n+m+1}\right]_{0}^{3}=0
\end{gathered}
$$

as required, as $n \neq m$ by assumption and $n+m+1 \neq 0$ since $n>0$ and $m>0$.
5. Question Use a trial function of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

to find the solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+x^{2} y=0
$$

Write the general solution in the form $y=A f(x)+B x g(x)$, where $A=y(0)$ and $B=y^{\prime}(0)$. Write down the first three non-zero terms of the expansions of $f(x)$ and $g(x)$.
Answer

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+20 a_{5} x^{3}+\cdots+(n+2)(n+1) a_{n+2} x^{n}+\ldots
$$

We get a recurrence relation between a_{n+2} and a_{n-1} by equating coefficients of x^{n}. We find that

$$
\frac{a_{n+2}}{a_{n-2}}=\frac{1}{(n+2)(n+1)}
$$

From the coefficients at x^{0} through to x^{3} we see that a_{0} and a_{1} are equal to A and B, and that $a_{2}=a_{3}=0$. Then from the recurrence relation we have $a_{4}=a_{0} /(3 \cdot 4)=A / 12, a_{5}=a_{1} /(4 \cdot 5)=B / 20, a_{6}=a_{2} /(5 \cdot 6)=0$, $a_{7}=a_{3} /(6 \cdot 7)=0, a_{8}=a_{4} /(7 \cdot 8)=A / 672$ and $a_{9}=a_{5} /(8 \cdot 9)=B / 1440$. Thus $y=A f(x)+B x g(x)$ where

$$
f(x)=1+\frac{x^{4}}{12}+\frac{x^{8}}{672}+\ldots
$$

and

$$
g(x)=1+\frac{x^{4}}{20}+\frac{x^{8}}{1440}+\ldots
$$

Question

Show that these solutions converge for all finite values of x.
Answer The ratio between successive nonzero terms in each of the two series is $a_{n+2} x^{n+2} /\left(a_{n-2} x^{n-2}\right)=$ $x^{4} /((n+1)(n+2))$. The size of this ratio tends to zero for all finite values of x as n tends to ∞. The two series will therefore converge for all finite values of x.
6. Question Explain what is meant by the terms ordinary point, singular point and regular singular point for the differential equation

$$
P(x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+Q(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+R(x) y=0
$$

where $P(x), Q(x)$ and $R(x)$ are polynomials.
Answer Any point where $P(x)=0$ and so equation cannot be resolved for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ is a singular point of the differential equation. Any point that is not singular is a regular point. If x_{0} is a singular point and both limits

$$
\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) \frac{Q(x)}{P(x)} \quad \text { and } \quad \lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)^{2} \frac{R(x)}{P(x)}
$$

are finite, then x_{0} is a regular singular point.

Question

Find the singular points of the differential equation

$$
x^{3}\left(x^{2}-9\right)^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x^{2}\left(x^{2}-9\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+\left(x^{2}+1\right) y=0
$$

and for each singular point state whether it is regular or not.
Answer There are 3 singular points, $x=0, x=3$ and $x=-3$.
For the singular point $x=0$ we have

$$
\frac{x Q(x)}{P(x)}=\frac{x \cdot x^{2}\left(x^{2}-9\right)}{x^{3}\left(x^{2}-9\right)^{2}} \rightarrow\left[\frac{1}{x^{2}-9}\right]_{0}
$$

finite as $x \rightarrow 0$, and

$$
\frac{x^{2} R(x)}{P(x)}=\frac{x^{2} \cdot\left(x^{2}+1\right)}{x^{3}\left(x^{2}-9\right)^{2}} \sim \frac{1}{81 x} \rightarrow \infty
$$

as $x \rightarrow 0$ so this is not a regular singular point.
For the singular point $x=3$ we have

$$
\frac{(x-3) Q(x)}{P(x)}=\frac{(x-3) \cdot x^{2}(x-3)(x+3)}{x^{3}(x-3)^{2}(x+3)^{2}} \rightarrow\left[\frac{1}{x(x+3)}\right]_{x=3}
$$

finite, and

$$
\frac{(x-3)^{2} R(x)}{P(x)}=\frac{(x-3)^{2} \cdot\left(x^{2}+1\right)}{x^{3}(x-3)^{2}(x+3)^{2}} \rightarrow\left[\frac{x^{2}+1}{x^{3}(x+3)^{2}}\right]_{x=3}
$$

also finite, so $x=3$ is a regular singular point.
Calculations for $x=-3$ are identical to those for $x=3$ with all $(x-3)$ swapped with $(x+3)$, and it comes out as a regular singular point, too

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\left[\begin{array}{ll}
1 & 9 \\
4 & 1
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
7 e^{2 t} \\
7 e^{2 t}
\end{array}\right]
$$

Answer The characteristic equation of the matrix satisfy $(1-\lambda)^{2}-36=0$ so the eigenvalues are $\lambda=-5$ and $\lambda=7$. The eigenvectors are $(3,-2)^{T}$ and $(3,2)^{T}$ respectively. The complementary function is therefore $C_{1}(3,-2)^{T} e^{-5 t}+C_{2}(3,2)^{T} e^{7 t}$, where C_{1} and C_{2} are constants.
The particular integral will be $\mathbf{w} e^{2 t}$. Substituting into the differential equation and dividing through by $e^{2 t}$ gives:

$$
2 w_{1}=1 w_{1}+9 w_{2}+7 \quad \text { and } \quad 2 w_{2}=4 w_{1}+w_{2}+7
$$

The solution is $w_{1}=-2$ and $w_{2}=-1$.
The complete solution is then

$$
\mathbf{x}=C_{1}\left[\begin{array}{c}
3 \\
-2
\end{array}\right] e^{-5 t}+C_{2}\left[\begin{array}{l}
3 \\
2
\end{array}\right] e^{7 t}-\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{2 t}
$$

where C_{1} and C_{2} are arbitrary constants.

SECTION B

8. Question Show that when $\lambda \leq 0$ the boundary value problem

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+10 \frac{\mathrm{~d} y}{\mathrm{~d} x}+(25+\lambda) y=0, \quad y(0)=0, \quad y(\pi)=0
$$

has no eigenfunctions, but for appropriate values of $\lambda>0$, the eigenfunctions are:

$$
\phi_{n}(x)=e^{-5 x} \sin (n x), \quad n=1,2,3 \cdots
$$

Answer Characteristic equation: $y=e^{m x}$ will be a solution if $m^{2}+10 m+(25+\lambda)=0$, that is for $m=-5 \pm \sqrt{-\lambda}$. If $\lambda<0$, both values of m will be real and distinct. Let $\lambda=-p^{2}, p>0$, the general solution is then $y=A e^{(-5+p) x}+B e^{(-5-p) x}$. The boundary conditions give $y(0)=0=A+B$ and $y(\pi)=0=\left(A e^{\pi p}+B e^{-\pi p}\right) e^{-5 \pi}$. The only solution is $A=B=0$ and there are no eigenfunctions.
For $\lambda=0$ the general solution is $y=(A+B x) e^{-5 x}$. The boundary conditions give $y(0)=0=A$ and $y(\pi)=0=(A+B \pi) e^{-5 \pi}$ and so $A=B=0$ and there are no eigenfunctions.
For $\lambda=\omega^{2}, \omega>0$, we have $y=e^{-5 x}(A \cos (\omega x)+B \sin (\omega x))$.
The boundary conditions give $y(0)=0=A$ and then $y(\pi)=0=B e^{-5 \pi} \sin (\omega \pi)$. Thus $B=0$ unless $\sin (\omega \pi)=0$. This will be so if $\omega=n$ for positive integer n, and the eigenfunctions are $e^{-5 x} \sin (n x)=\phi_{n}(x)$ as requested.

Question

Further, show that $\int_{0}^{\pi} e^{10 x} \phi_{n}(x) \phi_{m}(x) \mathrm{d} x=0$ for $n \neq m$, and evaluate $\int_{0}^{\pi} e^{10 x} \phi_{n}^{2}(x) \mathrm{d} x$.
Answer We have

$$
\begin{aligned}
\int_{0}^{\pi} e^{10 x} \phi_{n}(x) \phi_{m}(x) \mathrm{d} x & =\int_{0}^{\pi} e^{10 x} e^{-5 x} \sin (n x) e^{-5 x} \sin (m x) \mathrm{d} x= \\
\int_{0}^{\pi} \sin (n x) \sin (m x) \mathrm{d} x & =\frac{1}{2} \int_{0}^{\pi}[\cos ((m-n) x)-\cos ((m+n) x)] \mathrm{d} x .
\end{aligned}
$$

For $m \neq n$, this integral evaluates to

$$
\frac{1}{2}\left\{\left[\frac{\sin ((m-n) x)}{m-n}\right]_{0}^{\pi}-\left[\frac{\sin ((m+n) x)}{m+n}\right]_{0}^{\pi}\right\}=0
$$

as requested, as both denominators are nonzero since $m \neq n$ by assumption and both m and n are positive. .
For $m=n$, this integral becomes

$$
\frac{1}{2} \int_{0}^{\pi}[1-\cos (2 n x)] \mathrm{d} x=\frac{1}{2}\left\{\pi-\left[\frac{\sin (2 n x)}{2 n}\right]_{0}^{\pi}\right\}=\frac{\pi}{2}
$$

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+c}
$$

to find two linearly independent solutions of the differential equation:

$$
\begin{equation*}
3 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+(2-x) \frac{\mathrm{d} y}{\mathrm{~d} x}-y=0 . \tag{1}
\end{equation*}
$$

Write down the first three non-zero terms of each series.
Answer Substituting into the differential equation:

$-y=$	$-a_{0} x^{c}$	$-\cdots-a_{n} x^{c+n}$	-
$2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 c a_{0} x^{c-1}$	$+2(c+1) a_{1} x^{c}$	$+\cdots+2(c+n+1) a_{n+1} x^{c+n}$	$+$
$-x \frac{\mathrm{~d} y}{\mathrm{~d} x}=$	$-c a_{0} x^{c}$	$-\cdots-(c+n) a_{n} x^{c+n}$	-
$3 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=3 c(c-1) a_{0} x^{c-1}$	$+3(c+1) c a_{1} x^{c}$	$+\cdots+3(c+n+1)(c+n) a_{n+1} x^{c+n}$	+

The smallest power of x in this is x^{c-1}. Its coefficient is $(3 c(c-1)+2 c) a_{0}=c(3 c-1) a_{0}$. As a_{0} is not zero by assumption, we have $c=0$ or $c=1 / 3$.
We get the recurrence relation by looking at the coefficient of x^{n+c}. This gives us

$$
\frac{a_{n+1}}{a_{n}}=\frac{c+n+1}{(c+n+1)(3 c+3 n+2)}=\frac{1}{3 c+3 n+2}
$$

For $c=0$ if we take $a_{0}=1$, we have one solution

$$
y=1+\frac{1}{2} x+\frac{1}{2} \frac{1}{5} x^{2}+\ldots,
$$

and for $c=1 / 3$ we have the other solution

$$
y=x^{\frac{1}{3}}\left\{1+\frac{1}{3} x+\frac{1}{3} \frac{1}{6} x^{2}+\ldots\right\}
$$

so we have two linearly independent solutions as requested.

Question

Show that both of these solutions converge for all values of $x>0$.
Answer The ratio between successive terms in either of the series is $x /(3 c+3 n+2)$. This tends to zero as n tends to infinity for all finite values of x. The series therefore converges for all finite values of x.

Question

Write equation (1) in Sturm-Liouville form.
Answer To convert to the Sturm Liouville form, we can first divide through by $3 x$ and then multiply through by a function $P(x)$ which changes the derivative part to the form

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(P(x) \frac{\mathrm{d} y}{\mathrm{~d} x}\right)=P(x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+P^{\prime}(x) \frac{\mathrm{d} y}{\mathrm{~d} x}
$$

Such a function will satisfy the differential equation $P^{\prime}(x)=[(2-x) / 3 x] P(x)$. Thus $\ln P=(2 \ln x-x) / 3$ so that $P=x^{2 / 3} e^{-x / 3}$. The Sturm Liouville form is then

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2 / 3} e^{-x / 3} \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)-\frac{1}{3} x^{-1 / 3} e^{-x / 3} y=0
$$

10. Question Use a trial function of the form $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ to find a series solution of the differential equation:

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\lambda y=0 \tag{2}
\end{equation*}
$$

$$
\frac{a_{n+2}}{a_{n}}=\frac{n(n+3)-\lambda}{(n+1)(n+2)}
$$

Answer

Substituting $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ into the differential equation gives

$$
\begin{array}{rllllll}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} & =2 a_{2} & +2 \cdot 3 a_{3} x & +3 \cdot 4 a_{4} x^{2} & +4 \cdot 5 a_{5} x^{3} & +5 \cdot 6 a_{6} x^{4} & +\cdots+(n+2)(n+1) a_{n-2} x^{n} \\
-x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} & = & & -2 a_{2} x^{2} & -2 \cdot 3 a_{3} x^{3} & -3 \cdot 4 a_{4} x^{4} & -\cdots-n(n-1) a_{n} x^{n} \\
-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x} & = & -4 a_{1} x & -4 \cdot 2 a_{2} x^{2} & -4 \cdot 3 a_{3} x^{3} & -4 \cdot 4 a_{4} x^{4} & -\cdots-4 n a_{n} x^{n} \\
\lambda y & =\lambda a_{0} & +\lambda a_{1} x & +\lambda a_{2} x^{2} & +\lambda a_{3} x^{3} & +\lambda a_{4} x^{4} & +\cdots+\lambda a_{n} x^{n}
\end{array}
$$

The coefficient of x^{n} in the differential equation is

$$
(n+2)(n+1) a_{n+2}-n(n-1) a_{n}-4 n a_{n}+\lambda a_{n}=0
$$

which gives the recurrence relation

$$
\frac{a_{n+2}}{a_{n}}=\frac{n^{2}+3 n-\lambda}{(n+2)(n+1)}
$$

as requested.

Question

Show that the general solution to equation (2) is a linear combination of a series of odd powers of x and a series of even powers of x
Answer The solution is

$$
\begin{gathered}
y=a_{0}\left\{1+\frac{a_{2}}{a_{0}} x^{2}+\frac{a_{2}}{a_{0}} \frac{a_{4}}{a_{2}} x^{4}+\ldots\right\}+a_{1}\left\{x+\frac{a_{3}}{a_{1}} x^{3}+\frac{a_{3}}{a_{1}} \frac{a_{5}}{a_{3}} x^{5}+\ldots\right\} \\
=a_{0}\left\{1+\frac{-\lambda}{1 \cdot 2} x^{2}+\frac{-\lambda}{1 \cdot 2} \frac{2 \cdot 5-\lambda}{3 \cdot 4} x^{4}+\ldots\right\}+a_{1}\left\{x+\frac{1 \cdot 4-\lambda}{2 \cdot 3} x^{3}+\frac{1 \cdot 4-\lambda}{2 \cdot 3} \frac{3 \cdot 6-\lambda}{4 \cdot 5} x^{5}+\ldots\right\}
\end{gathered}
$$

Question

Show that if $\lambda=m(m+3)$ and m is an even positive integer, the even series solution terminates and is just a polynomial, while if m is an odd positive integer, the series of odd powers of x terminates and becomes a polynomial. Write down the polynomials for the cases when $m=1,2,3,4$. Denote these polynomials by $P_{m}(x)$.
Answer If $\lambda=m(m+3)$ for some integer m, then the recurrent relationship for that m gives that $a_{m+2} / a_{m}=0$, hence $a_{m+2}=0$ and all subsequent coefficients of the same parity vanish, too, and this series terminates. If m is odd, it is the series of odd powers which terminates, while if m is even, the series of even powers terminates.
If $m=1, \lambda=1 \cdot 4=4, a_{3}=0$, so $P_{1}(x)=x$.
If $m=2, \lambda=2 \cdot 5=10, a_{4}=0, a_{2} / a_{0}=-10 /(1 \cdot 2)$, so $P_{2}(x)=1-5 x^{2}$.
If $m=3, \lambda=3 \cdot 6=18, a_{5}=0, a_{3} / a_{1}=(4-18) /(2 \cdot 3)=-7 / 3$, so $P_{3}(x)=x-\frac{7}{3} x^{3}$.
Question Show that the Sturm-Liouville form of equation (2) is

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(1-x^{2}\right)^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)+\left(1-x^{2}\right) \lambda y=0
$$

Answer Differentiation using the product and chain rules in the above equation gives

$$
\left(1-x^{2}\right)^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2\left(1-x^{2}\right)(-2 x) \frac{\mathrm{d} y}{\mathrm{~d} x}+\left(1-x^{2}\right) \lambda y=0
$$

Dividing through by $\left(1-x^{2}\right)$ gives equation (2), which proves the required.

Question

$$
\int_{-1}^{1}\left(1-x^{2}\right) P_{n}(x) P_{m}(x) \mathrm{d} x=0 .
$$

Answer The integration is from -1 to 1 . This means that the integral of an odd function of x is zero. Therefore the integral of an odd order P with an even order P is zero. We thus only have to evaluate the integral with P_{1} and P_{3}. It is

$$
\begin{aligned}
& \int_{-1}^{1}\left(1-x^{2}\right) x\left(x-\frac{7}{3} x^{3}\right) \mathrm{d} x=2 \int_{0}^{1}\left(x^{2}-\frac{10}{3} x^{4}+\frac{7}{3} x^{6}\right) \mathrm{d} x \\
& \quad=2\left[\frac{x^{3}}{3}-\frac{10}{3} \frac{x^{5}}{5}+\frac{7}{3} \frac{x^{7}}{7}\right]_{0}^{1}=2\left(\frac{1}{3}-\frac{2}{3}+\frac{1}{3}\right)=0
\end{aligned}
$$

as required.
11. Question Show that eigenvalue $\lambda=-2$ is a double root of the characteristic equation of the matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right]
$$

and find the other eigenvalue.
Answer The characteristic determinant is

$$
\left|\begin{array}{ccc}
1-\lambda & -3 & 3 \\
3 & -5-\lambda & 3 \\
6 & -6 & 4-\lambda
\end{array}\right|=-\left(\lambda^{3}-12 \lambda-16\right)
$$

If $\lambda_{1}=\lambda_{2}=-2$ is a double root then we should have $\lambda^{3}-12 \lambda-16=(\lambda+2)^{2}\left(\lambda-\lambda_{3}\right)$. By multiplying through and equating coefficients at powers of λ, we get $4-\lambda_{3}=0,4-4 \lambda_{3}=-12$ and $4 \lambda_{3}=4$. All these three equations can, indeed, be satisfied (which proves that $\lambda=-2$ is indeed a double root) by $\lambda_{3}=4$.
Question Show that the vectors $(1,1,0)^{T}$ and $(1,0,-1)^{T}$ are eigenvectors of \mathbf{A} and find the third eigenvector, writing it in the form $\left(1, u_{2}, u_{3}\right)^{T}$.
Answer Multiplication gives $\mathbf{A}(1,1,0)^{T}=(-2,-2,0)^{T}=-2(1,1,0)^{T}$, so $(1,1,0)^{T}$ is an eigenvector \mathbf{e}_{1} with eigenvalue $\lambda_{1}=-2$. Similarly, $\mathbf{A}(1,0,-1)^{T}=(-2,0,2)^{T}=-2(1,0,-1)^{T}$, so $(1,0,-1)^{T}$ is an eigenvector \mathbf{e}_{2} with the same eigenvalue $\lambda_{2}=-2$.
The third eigenvector can be found by pre-multiplying the first column of $\mathbf{A}-\lambda_{2} \mathbf{I}$ by the matrix $\mathbf{A}-\lambda_{1} \mathbf{I}$. That is

$$
\mathbf{e}_{3}=\left[\begin{array}{lll}
3 & -3 & 3 \\
3 & -3 & 3 \\
6 & -6 & 6
\end{array}\right]\left[\begin{array}{l}
3 \\
3 \\
6
\end{array}\right]=\left[\begin{array}{l}
18 \\
18 \\
36
\end{array}\right]
$$

We can take a factor of 18 out so that $\mathbf{e}_{3}=(1,1,2)^{T}$. Its eigenvalue is $\lambda_{3}=4$.
Question Find a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that

$$
\mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}
$$

Answer The matrix \mathbf{P} is the matrix whose columns are the eigenvectors, so $\mathbf{P}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & -1 & 2\end{array}\right] \quad$ and \mathbf{D} is a diagonal matrix whose elements are the eigenvalues, $\mathbf{D}=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4\end{array}\right]$.
Question Transform the set of differential equations:

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\mathbf{A} \mathbf{x}+\mathbf{f}(t)
$$

where $\mathbf{x}(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)^{T}$, and $\mathbf{f}(t)$ is a given vector-function of time, into the form:

$$
\frac{\mathrm{d} \mathbf{y}}{\mathrm{~d} t}=\mathbf{D} \mathbf{y}+\mathbf{c}(t)
$$

terms of the components of $\mathbf{f}(t)$.
Answer The required transformation is $\mathbf{x}=\mathbf{P y}$ which gives $\dot{\mathbf{x}}=\mathbf{P} \dot{\mathbf{y}}=\mathbf{A P y}+\mathbf{f}(t)$. Then $\mathbf{P}^{-1} \mathbf{P} \dot{\mathbf{y}}=$ $\mathbf{P}^{-1} \mathbf{A P y}+\mathbf{P}^{-1} \mathbf{f}(t)$, that is $\dot{\mathbf{y}}=\mathbf{D y}+\mathbf{c}(t)$, where $\mathbf{c}(t)=\mathbf{P}^{-1} \mathbf{f}(t)$. The inverse matrix is

$$
P^{-1}=\frac{1}{2}\left[\begin{array}{ccc}
-1 & 3 & -1 \\
2 & -2 & 0 \\
1 & -1 & 1
\end{array}\right]
$$

Therefore $c_{1}=\left(-f_{1}+3 f_{2}-f_{3}\right) / 2, c_{2}=f_{1}-f_{2}$ and $c_{3}=\left(f_{1}-f_{2}+f_{3}\right) / 2$.
12. Question Show that $\mathbf{x}=(1,1)^{T} e^{3 t}$ is one solution of

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right] \mathbf{x}
$$

Answer If we substitute given \mathbf{x} into the equation, we get $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\left[\begin{array}{l}3 \\ 3\end{array}\right] e^{3 t} \quad$ for the left-hand side, and $\left[\begin{array}{cc}2 & 1 \\ -1 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{3 t}=\left[\begin{array}{l}3 \\ 3\end{array}\right] e^{3 t} \quad$ for the right-hand side, so the equation is satisifed.
Question Find a second solution and hence write down the general solution.
Answer We find the eigenvalues by solving $\left|\begin{array}{cc}2-\lambda & 1 \\ -1 & 4-\lambda\end{array}\right|=0$. This has a double root $\lambda=3$.
There is no second eigenvector for this eigenvalue, hence we look for a second solution $(1,1)^{T} t e^{3 t}+\mathbf{w} e^{3 t}$. We get

$$
\left[\begin{array}{l}
3 t+1+3 w_{1} \\
3 t+1+3 w_{2}
\end{array}\right] e^{3 t}=\left[\begin{array}{c}
3 t+2 w_{1}+w_{2} \\
3 t-w_{1}+4 w_{2}
\end{array}\right] e^{3 t}
$$

Both components lead to the same equation, $w_{1}-w_{2}=-1$. We can take $w_{1}=0$ and $w_{2}=1$. The second solution is then $\mathbf{x}=(1,1)^{T} t e^{3 t}+(0,1)^{T} e^{3 t}$. The general solution is then $\mathbf{x}=A(1,1)^{T} e^{3 t}+B\left[(1,1)^{T} t e^{3 t}+(0,1)^{T} e^{3 t}\right]$.

Question

Find a linear transformation, $\mathbf{x}=\mathbf{P y}$, which will decouple the differential equations represented in the matrix form as

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right] \mathbf{x}+\mathbf{f}(t)
$$

where $\mathbf{f}(t)$ is some known vector-function of t, and write down the decoupled differential equations. Solve these differential equations and hence determine $\mathbf{x}(t)$ when $\mathbf{f}(t)=(0,1)^{T} e^{3 t}$.
Answer We take the columns of \mathbf{P} equal to the eigenvector and the generalized eigenvector, that is the first column $(1,1)^{T}$ and second column $(0,1)^{T}$. Thus

$$
\mathbf{P}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{P}^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]
$$

Substitution $\mathbf{x}=\mathbf{P y}$ gives

$$
\frac{\mathrm{d} \mathbf{y}}{\mathrm{~d} t}=\mathbf{P}^{-1} \frac{\mathrm{~d} \mathbf{x}}{\mathrm{~d} t}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \mathbf{y}+\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right] \mathbf{f}=\left[\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right] \mathbf{y}+\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right] \mathbf{f} .
$$

By components, we have two decoupled equations: $\dot{y}_{1}=3 y_{1}+y_{2}+f_{1}$ and $\dot{y}_{2}=3 y_{2}-f_{1}+f_{2}$ - the equation for y_{2} does not involve y_{1} (but not vice versa!).
We solve equation for y_{2} first: $\dot{y}_{2}=3 y_{2}+e^{3 t}$. This is a first order linear equation whose integrating factor is $e^{-3 t}$. The solution is $y_{2}=(A+t) e^{3 t}$.
The equation for y_{1} is then $\dot{y}_{1}=3 y_{1}+(A+t) e^{3 t}$. This is also a first order linear equation with integrating factor $e^{-3 t}$. The solution is $y_{1}=\left(t^{2} / 2+A t+B\right) e^{3 t}$. Then $x_{1}=y_{1}=\left(t^{2} / 2+A t+B\right) e^{3 t}$, and $x_{2}=y_{1}+y_{2}=$ $\left(t^{2} / 2+(A+1) t+A+B\right) e^{3 t}$.

