JANUARY 2007 EXAMINATIONS

Bachelor of Arts : Year 2
Bachelor of Science : Year 1
Bachelor of Science : Year 2
Bachelor of Science : Year 3
Master of Chemistry : Year 2
Master of Mathematics : Year 2
Master of Physics : Year 4
No qualification aimed for : Year 1

ORDINARY DIFFERENTIAL EQUATIONS

TIME ALLOWED: TWO HOURS AND A HALF

INSTRUCTIONS TO CANDIDATES

Candidates should answer the WHOLE of Section A and THREE questions from Section B. Section A carries 55% of the available marks.

SECTION A

1. Find the general solutions of the differential equations:

$$
\begin{gathered}
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+(1+x) y^{2}=2 x^{3} y^{2}, \\
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(1+x^{2}\right) y=2 x^{3} .
\end{gathered}
$$

[7 marks]
2. Solve the initial value problem:

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+11 \frac{\mathrm{~d} y}{\mathrm{~d} x}+28 y=28 x^{2}+22 x+30, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

[7 marks]
3. Show that $y=1 / x$ is a solution of the differential equation

$$
\left(x^{2}+x\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-\left(x^{2}-2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-(x+2) y=0
$$

Find another linearly independent solution to this equation.
[8 marks]
4. Given that λ is a positive constant, find the eigenvalues λ_{n} and eigenfunctions $\phi_{n}(x)$ for the boundary value problem:

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y(3)=0
$$

Show that these eigenfunctions satisfy the orthogonality relation:

$$
\int_{0}^{3} \phi_{n}(x) \phi_{m}(x) \mathrm{d} x=0 \quad \text { for } \quad n \neq m
$$

5. Use a trial function of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

to find the solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+x^{2} y=0
$$

Write the general solution in the form $y=A f(x)+B x g(x)$, where $A=y(0)$ and $B=y^{\prime}(0)$. Write down the first three non-zero terms of the expansions of $f(x)$ and $g(x)$.
Show that these solutions converge for all finite values of x.
6. Explain what is meant by the terms ordinary point, singular point and regular singular point for the differential equation

$$
P(x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+Q(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+R(x) y=0,
$$

where $P(x), Q(x)$ and $R(x)$ are polynomials.
Find the singular points of the differential equation

$$
x^{3}\left(x^{2}-9\right)^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x^{2}\left(x^{2}-9\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+\left(x^{2}+1\right) y=0
$$

and for each singular point state whether it is regular or not.
7. Find the general solution of the differential equations:

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\left[\begin{array}{ll}
1 & 9 \\
4 & 1
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
7 e^{2 t} \\
7 e^{2 t}
\end{array}\right]
$$

[8 marks]

Paper Code MATH201 Page 3 of 6

SECTION B

8. Show that when $\lambda \leq 0$ the boundary value problem

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+10 \frac{\mathrm{~d} y}{\mathrm{~d} x}+(25+\lambda) y=0, \quad y(0)=0, \quad y(\pi)=0
$$

has no eigenfunctions, but for appropriate values of $\lambda>0$, the eigenfunctions are:

$$
\phi_{n}(x)=e^{-5 x} \sin (n x), \quad n=1,2,3 \cdots .
$$

Further, show that $\int_{0}^{\pi} e^{10 x} \phi_{n}(x) \phi_{m}(x) \mathrm{d} x=0$ for $n \neq m$, and evaluate $\int_{0}^{\pi} e^{10 x} \phi_{n}^{2}(x) \mathrm{d} x$.
[15 marks]
9. Use a trial function of the form:

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+c}
$$

to find two linearly independent solutions of the differential equation:

$$
\begin{equation*}
3 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+(2-x) \frac{\mathrm{d} y}{\mathrm{~d} x}-y=0 . \tag{1}
\end{equation*}
$$

Write down the first three non-zero terms of each series.
Show that both of these solutions converge for all values of $x>0$.
Write equation (1) in Sturm-Liouville form.
[15 marks]
10. Use a trial function of the form $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ to find a series solution of the differential equation:

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\lambda y=0 \tag{2}
\end{equation*}
$$

Show that the recurrence relation between the coefficients a_{n+2} and a_{n} is

$$
\frac{a_{n+2}}{a_{n}}=\frac{n(n+3)-\lambda}{(n+1)(n+2)} .
$$

Show that the general solution to equation (2) is a linear combination of a series of odd powers of x and a series of even powers of x
Show that if $\lambda=m(m+3)$ and m is an even positive integer, the even series solution terminates and is just a polynomial, while if m is an odd positive integer, the series of odd powers of x terminates and becomes a polynomial. Write down the polynomials for the cases when $m=1,2,3,4$. Denote these polynomials by $P_{m}(x)$. Show that the Sturm-Liouville form of equation (2) is

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(1-x^{2}\right)^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)+\left(1-x^{2}\right) \lambda y=0
$$

Show that for all $m, n=1,2,3$, where $m \neq n$,

$$
\int_{-1}^{1}\left(1-x^{2}\right) P_{n}(x) P_{m}(x) \mathrm{d} x=0
$$

11. Show that eigenvalue $\lambda=-2$ is a double root of the characteristic equation of the matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right]
$$

and find the other eigenvalue. Show that the vectors $(1,1,0)^{T}$ and $(1,0,-1)^{T}$ are eigenvectors of \mathbf{A} and find the third eigenvector, writing it in the form $\left(1, u_{2}, u_{3}\right)^{T}$. Find a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that

$$
\mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}
$$

Transform the set of differential equations:

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\mathbf{A} \mathbf{x}+\mathbf{f}(t)
$$

where $\mathbf{x}(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)^{T}$, and $\mathbf{f}(t)$ is a given vector-function of time, into the form:

$$
\frac{\mathrm{d} \mathbf{y}}{\mathrm{~d} t}=\mathbf{D} \mathbf{y}+\mathbf{c}(t)
$$

where \mathbf{A} and \mathbf{D} are the matrices given/obtained above. Write down expressions for the components of $\mathbf{c}(t)$ in terms of the components of $\mathbf{f}(t)$.
[15 marks]
12. Show that $\mathbf{x}=(1,1)^{T} e^{3 t}$ is one solution of

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right] \mathbf{x}
$$

Find a second solution and hence write down the general solution.
Find a linear transformation, $\mathbf{x}=\mathbf{P y}$, which will decouple the differential equations represented in the matrix form as

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right] \mathbf{x}+\mathbf{f}(t)
$$

where $\mathbf{f}(t)$ is some known vector-function of t, and write down the decoupled differential equations. Solve these differential equations and hence determine $\mathbf{x}(t)$ when $\mathbf{f}(t)=(0,1)^{T} e^{3 t}$.

