MATH 201 Jan 2006

ORDINARY DIFFERENTIAL EQUATIONS

TIME ALLOWED: TWO HOURS AND A HALF

Instructions to candidates
Candidates should answer the WHOLE of Section A and THREE questions from Section B. Section A carries 55% of the available marks.

SECTION A

1. Find the general solutions for the differential equations:

$$
\begin{aligned}
& x \frac{d y}{d x}+(1+x) y^{2}=x^{2} y^{2}, \\
& (1+x) \frac{d y}{d x}+2 y=x^{2}-1,
\end{aligned}
$$

2. Solve the initial value problem:

$$
\frac{d^{2} y}{d x^{2}}+13 \frac{d y}{d x}+40 y=40 x^{2}+146 x+241, \quad y(0)=10, \quad y^{\prime}(0)=-31
$$

3. Show that $y=x$ is a solution of the differential equation

$$
\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+4 y=0
$$

Find another linearly independent solution to this equation.
4. Given that λ is a positive constant find the eigenvalues and eigenfunctions $\phi_{n}(x)$ for the boundary value problem:

$$
\frac{d^{2} y}{d x^{2}}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(\pi)=0
$$

Show that these eigenfunctions satisfy the orthogonality relation:

$$
\int_{0}^{\pi} \phi_{n}(x) \phi_{m}(x) d x=0 \quad \text { for } \quad n \neq m
$$

5. Use a trial function of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

to find the solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 x y=0
$$

Write the general solution in the form $y=A f(x)+B x g(x)$, where $A=y(0)$ and $B=y^{\prime}(0)$. Write down the first 3 non zero terms of the expansions of $f(x)$ and $g(x)$.

Show that these solutions converge for all finite values of x.
6. Explain what is meant by the terms ordinary point, singular point and regular singular point for the differential equation

$$
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0
$$

where $P(x), Q(x)$ and $R(x)$ are polynomials.
Find the singular points of the differential equation

$$
x^{3}\left(x^{2}-3 x+2\right) \frac{d^{2} y}{d x^{2}}+x^{2}(x+4) \frac{d y}{d x}+5 y=0
$$

and for each singular point state whether it is regular or not.
7. Find the general solution of the differential equations:

$$
\frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}
2 & -3 \\
1 & 6
\end{array}\right) \mathbf{x}-\binom{6 e^{2 t}}{9 e^{2 t}}
$$

SECTION B

8. Show that when $\lambda \leq 4$ the boundary value problem

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(1)=0 \tag{1}
\end{equation*}
$$

has no eigenfunctions, but that for appropriate values of $\lambda>4$, the eigenfunctions are:

$$
\phi_{n}(x)=e^{-2 x} \sin \left(\omega_{n} x\right), \quad n=1,2,3 \cdots,
$$

where ω_{n} satifies the equation $\omega_{n}=2 \tan \omega_{n}$.
Write eq(1) in Sturm Liouville form and hence or otherwise, show that

$$
\int_{0}^{\pi} e^{4 x} \phi_{n}(x) \phi_{m}(x) d x=0 \quad n \neq m .
$$

9. Use a trial function of the form:

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

to find a series solution for the differential equation:

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}+\lambda y=0
$$

Show that the recurrence relation between the coefficients a_{n+2} and a_{n} is

$$
\frac{a_{n+2}}{a_{n}}=\frac{n(n-1)-\lambda}{(n+1)(n+2)} .
$$

Show that the general solution to this differential equation is a linear combination of a series of odd powers of x and a series of even powers of x

Show that if $\lambda=m(m-1)$ and m is an even positive integer, the even series solution terminates and is just a polynomial, while if m is an odd positive integer, the series of odd powers of x terminates and becomes a polynomial. Write down the polynomials for the cases when $m=2,3,4,5$. Denote these polynomials by $Q_{m}(x)$.

Show that for $m, n=2,3,4,5$,

$$
\int_{-1}^{1} \frac{Q_{n}(x) Q_{m}(x)}{1-x^{2}} d x=0 \quad \text { for all } \quad m \neq n
$$

10. Use a trial function of the form:

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+c}
$$

to find two linearly independent solutions of the differential equation:

$$
\begin{equation*}
4 x \frac{d^{2} y}{d x^{2}}+(3-x) \frac{d y}{d x}-y=0 . \tag{2}
\end{equation*}
$$

Show that both of these solutions converge for all values of $x>0$.
Write down the first three terms of each series.
Write eq(2) in Sturm Liouville form.
11. Show that the vector $(1,2,-1)^{T}$ is an eigenvector for the matrix

$$
A=\left(\begin{array}{ccc}
7 & 2 & 10 \\
-8 & -3 & -16 \\
1 & 1 & 4
\end{array}\right)
$$

Find the eigenvalue for this eigenvector. Find the other two eigenvalues and the corresponding eigenvectors.
Find a matrix P such that

$$
P^{-1} A P=D,
$$

where D is a diagonal matrix whose elements should be stated.
Transform the set of differential equations:

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}+\mathbf{f}(t)
$$

into the form:

$$
\frac{d \mathbf{y}}{d t}=D \mathbf{y}+\mathbf{c}(t)
$$

where A is the matrix given above. Write down expressions for the components of $\mathbf{c}(t)$ in terms of the components of $\mathbf{f}(t)$.
12. Show that $\mathbf{x}=(1,3)^{T} e^{5 t}$ is one solution of

$$
\frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}
2 & 1 \\
-9 & 8
\end{array}\right) \mathbf{x}
$$

Find a second solution and hence write down the general solution.
Find a linear transformation, $\mathbf{x}=P \mathbf{y}$, which will decouple the differential equations

$$
\frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}
2 & 1 \\
-9 & 8
\end{array}\right) \mathbf{x}+\mathbf{f}(t)
$$

where $\mathbf{f}(t)$ is some known function of t and write down the decoupled differential equations. Solve these differential equations and hence determine $\mathbf{x}(t)$ when $\mathbf{f}(t)=(0,1)^{T} e^{5 t}$.

