The solutions are all similar to questions set for homework except where marked bw for bookwork.

SECTION A

1. For the Complementary Function try a solution $y=e^{m x}$. This will satisfy the homogeneous equation if $m^{2}+13 m+36=0$. This has roots $m=-4$ and $m=-9$ so the Complementary Function is $A e^{-4 x}+B e^{-9 x}$.

To find the particular integral we try $y=a \cos (6 x)+b \sin (6 x)$. We find
$-36 a \cos (6 x)-36 b \sin (6 x)+13(-6 a \sin (6 x)+6 b \cos (6 x))+36(a \cos (6 x)+b \sin (6 x))=156 \cos (6 x)$ which has the solution $a=0, b=2$. The general solution is then

$$
y=A e^{-4 x}+B e^{-9 x}+2 \sin (6 x)
$$

From the initial conditions we get

$$
\begin{gathered}
y(0)=A+B=5 \\
y^{\prime}(0)=-4 A-9 B+12=-13, \quad \text { therefore } \quad A=4, \quad B=1
\end{gathered}
$$

The solution is therefore $y=4 e^{-4 x}+e^{-9 x}+2 \sin (6 x)$
2. Substituting x in to the equation gives $2 x-2 x=0$

Try $y=x u$. We get

$$
\left(1+x^{2}\right)\left[x u^{\prime \prime}+2 u^{\prime}\right]-2 x\left[x u^{\prime}+u\right]+2 x u=0
$$

This simplifies to

$$
\begin{aligned}
u^{\prime \prime}= & \left(\frac{-2}{x}+\frac{2 x}{1+x^{2}}\right) u^{\prime} \quad \text { so that } \quad \int \frac{d\left(u^{\prime}\right)}{u^{\prime}}=-2 \int \frac{d x}{x}+\int \frac{2 x d x}{x^{2}+1} \\
& \ln \left(u^{\prime}\right)=-2 \ln x+\ln \left(x^{2}+1\right) \quad \text { or } \quad u^{\prime}=\frac{1+x^{2}}{x^{2}}=\frac{1}{x^{2}}+1
\end{aligned}
$$

Therefore

$$
u=-\frac{1}{x}+x
$$

The second solution is therefore $y=x^{2}-1$.
Sturm Liouville form is:

$$
\frac{d}{d x}\left\{\frac{1}{x^{2}+1} \frac{d y}{d x}\right\}+\frac{2}{\left(x^{2}+1\right)^{2}} y=0
$$

3. The general solution to the differential equation is $y=A \cos (\omega x)+B \sin (\omega x)$. $y(0)=0=A$ and $y(5)=5=B \sin (5 \omega)$. Thus $B=5 / \sin (5 \omega)$ provided that $\sin (5 \omega) \neq 0$. If $\sin 5 \omega=0$ there is no solution. This will occur if $5 \omega=n \pi$ for any integer n. That is there is no solution for $\lambda=n^{2} \pi^{2} / 25$.
4. For $\lambda=\omega^{2}, y=A \cos (\omega x)+B \sin (\omega x) . y(0)=A=0$ and $y^{\prime}(2)=B \omega \cos (2 \omega)$. $B=0$ unless $\cos (2 \omega)=0$ that is if $\omega=(n+1 / 2) \pi / 2$. The eigenvalues are therefore $\lambda=(n+1 / 2)^{2} \pi^{2} / 4$ and the eigenfunctions $\sin ((n+1 / 2) \pi x / 2)$.
5.

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+20 a_{5} x^{3}+\ldots+(n+2)(n+1) a_{n+2} x^{n}+\ldots \\
x \frac{d y}{d x}=\quad a_{1} x+2 a_{2} x^{2}+3 a_{3} x^{3}+\ldots n a_{n} x^{n}+\ldots \\
3 y=\quad 3 a_{0}+3 a_{1} x+3 a_{2} x^{2}+3 a_{3} x^{3}+\ldots+3 a_{n} x^{n}+\ldots
\end{gathered}
$$

We get a recurrence relation between a_{n+2} and a_{n} by equating coefficients of x^{n}. We find that

$$
\frac{a_{n+2}}{a_{n}}=\frac{n+3}{(n+2)(n+1)}
$$

Thus all of the even coefficients are determined in terms of a_{0} and all of the odd coefficients in terms of a_{1}.

$$
f(x)=1+\frac{3}{2} x^{2}+\frac{5}{3.4} \frac{3}{2} x^{4}+\ldots
$$

and

$$
g(x)=1+\frac{4}{3.2} x^{2}+\frac{4}{3.2} \frac{6}{5.4} x^{4}+\ldots
$$

The ratio between successive terms in the two series is $(n+3) x^{2} /((n+2)(n+1))$. The size of this ratio tends to zero for all finite values of x as n tends to ∞. The two series will therefore converge for all finite values of x.
6. Any point where $P(x)=0$ and so $d^{2} y / d x^{2}$ is not defined is a singular point of the differential equation. All other points are ordinary points. If x_{0} is a singular point and

$$
\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) \frac{Q(x)}{P(x)} \quad \text { exists and } \quad \lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)^{2} \frac{R(x)}{P(x)} \quad \text { exists }
$$

the singular point is a regular singular point. If either limit does not exist, the point $x=x_{0}$ is an irregular singular point.

There are 3 singular points, $x=0, x=-4$ and $x=4$.
For $x=0$ we have $(x+4) /\left(x^{2}-16\right)^{2}$ is finite, but $\left(x^{2}+1\right) /\left[x\left(x^{2}-16\right)^{2}\right]$ is not as $x \rightarrow 0$, so $x=0$ is an irregular singular point.

For $x=-4, x^{2}(x+4)^{2} /\left[x^{3}\left(x^{2}-16\right)^{2}\right]$ and $(x+4)^{2}\left(x^{2}+1\right) /\left[x^{3}\left(x^{2}-16\right)^{2}\right]$ are both finite as $x \rightarrow-4$, so this point is a regular singular point

For $x=4$, we have $(x-4) Q(x) / P(x)=x^{2}(x-4)(x+4) /\left[x^{3}(x+4)^{2}(x-4)^{2}\right]$. This does not tend to a finite limit as $x \rightarrow 4$ and so this point is an irregular singular point.
7. The eigenvalues of A satisfy $(3-\lambda)(1-\lambda)-24=0$ so the eigenvalues are $\lambda=-3$ and $\lambda=7$. The eigenvectors are $(1,-1)^{T}$ and $(3,2)^{T}$. The complementary function is therefore $A_{1}(1,-1)^{T} e^{-3 t}+A_{2}(3,2)^{T} e^{7 t}$, where A_{1} and A_{2} are constants.

The particular integral will be $\mathbf{w} e^{2 t}$. Substituting into the differential equation and dividing through by $e^{2 t}$ gives:

$$
2 w_{1}=3 w_{1}+6 w_{2}-20 \quad \text { and } \quad 2 w_{2}=4 w_{1}+w_{2}-5
$$

The solution is $w_{1}=2$ and $w_{2}=3$.
The complete solution is then

$$
\mathbf{x}=A_{1}\binom{1}{-1} e^{-3 t}+A_{2}\binom{3}{2} e^{7 t}+\binom{2}{3} e^{2 t}
$$

where A_{1} and A_{2} are constants

SECTION B

8. For $\lambda=-p^{2}$, the general solution is $y=A e^{(p-3) x}+B e^{-(p+3) x}$. The boundary conditions give $y(0)=0=A+B$ and $y(\pi)=0=A e^{\pi(p-3)}+B e^{-\pi(p+3)}$. The only solution is $A=B=0$.

For $\lambda=0$ the general solution is $y=(A+B x) e^{-3 x}$. The boundary conditions give $y(0)=0=A$ and $y(\pi)=0=\pi B e^{-3 \pi}$ and so $A=B=0$.

For $\lambda=\omega^{2}$, we have $y=e^{-3 x}(A \cos (\omega x)+B \sin (\omega x))$.
The boundary conditions give $y(0)=0=A$ and then $y(\pi)=0=B e^{-3 \pi} \sin (\pi \omega)$. Thus $B=0$ unless $\sin (\pi \omega)=0$. This will be so if $\omega=n$. The eigenvalues are therefore $\lambda=n^{2}$ and the eigenfunctions $e^{-3 x} \sin (n x)$.

$$
\begin{gathered}
\int_{0}^{\pi} e^{6 x} \phi_{n}(x) \phi_{m}(x) d x=\int_{0}^{\pi} \sin (n x) \sin (m x) d x \\
=\frac{1}{2} \int_{0}^{\pi}\{\cos ((n-m) x)-\cos ((n+m) x)\} d x=\frac{1}{2}\left[\frac{\sin ((n-m) x}{(n-m)}-\frac{\sin ((n+m) x}{(n+m)}\right]_{0}^{\pi}=0 \\
\int_{0}^{\pi} \sin ^{2}(n x) d x=\frac{1}{2} \int_{0}^{\pi}\{1-\cos (2 n x)\} d x=\frac{\pi}{2} .
\end{gathered}
$$

9. The coefficient of x^{n} in the differential equation is

$$
(n+2)(n+1) a_{n+2}-2 n a_{n}+\lambda a_{n}=0
$$

This gives the recurrence relation

$$
\frac{a_{n+2}}{a_{n}}=\frac{2 n-\lambda}{(n+2)(n+1)}
$$

Clearly if $\lambda=2 m$ for some integer $m, a_{m+2} / a_{m}=0$, and this series terminates. If m is odd, it is the series of odd powers which terminates, while if m is even, the series of even powers terminates.

If $m=1, a_{3}=0$, so $H_{1}(x)=x$.
If $m=2, a_{4}=0$, so $H_{2}(x)=1-2 x^{2}$.
If $m=3, a_{5}=0$, so $H_{3}(x)=x-2 x^{3} / 3$.

$$
\frac{d}{d x}\left\{e^{-x^{2}} \frac{d y}{d x}\right\}+e^{-x^{2}} \lambda y=e^{-x^{2}} \frac{d^{2} y}{d x^{2}}-2 x e^{-x^{2}} \frac{d y}{d x}+e^{-x^{2}} \lambda y
$$

Divide this by $\exp -x^{2}$ and we get eq(1).
$H_{1}(x)$ and $H_{3}(x)$ are odd functions of x and $H_{2}(x)$ is an even function. This means that the integrals with $H_{1}(x) H_{2}(x)$ and $H_{3}(x) H_{2}(x)$ are zero. The only integral we have to evaluate is then

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} x\left(x-2 x^{3} / 3\right) d x \tag{2}
\end{equation*}
$$

Consider

$$
\int_{-\infty}^{\infty} e^{-x^{2}} x 2 x^{3} / 3 d x=-\int_{-\infty}^{\infty} x^{3} / 3 d\left(e^{-x^{2}}\right)=\left[e^{-x^{2}} x^{3} / 3\right]_{-\infty}^{\infty}+\int_{-\infty}^{\infty} e^{-x^{2}} x^{2} d x
$$

Thus the integral (2) is zero
10. Substituting into the differential equation:

$$
\begin{gathered}
7 c(c-1) a_{0} x^{c-1}+7(c+1) c a_{1} x^{c}+\ldots+7(c+n+1)(c+n) a_{n+1} x^{n+c}+\ldots \\
+6 c a_{0} x^{c-1}+6(c+1) a_{1} x^{c}+\ldots+6(c+n+1) a_{n+1} x^{n+c}+\ldots \\
-c a_{0} x^{c}-(c+1) a_{1} x^{c+1}-\ldots-(c+n) a_{n} x^{c+n}-\ldots \\
-a_{0} x^{c}-a_{1} x^{c+1}-\ldots-a_{n} x^{c+n}
\end{gathered}
$$

The smallest power of x in this is x^{c-1}. Its coefficient is $(7 c(c-1)+6 c) a_{0} . a_{0}$ is not zero by hypothesis and so $c=0$ or $c=1 / 7$.

We get the recurrence relation by looking at the coefficient of x^{n+c}. This gives us

$$
\frac{a_{n+1}}{a_{n}}=\frac{c+n+1}{(c+n+1)(7 c+7 n+6)}=\frac{1}{7 c+7 n+6}
$$

For $c=0$ if we take $a_{0}=1$,

$$
y=1+\frac{1}{6} x+\frac{1}{6} \frac{1}{13} x^{2}
$$

and for $c=1 / 7$ we have

$$
y=x^{\frac{1}{7}}\left\{1+\frac{1}{7} x+\frac{1}{7} \frac{1}{14} x^{2}+\ldots\right\}
$$

11. $A(1,0,-1)^{T}=(2,0,-2)^{T}=2(1,0,-1)^{T}$, so $(1,0,-1)^{T}$ is an eigenvector with eigenvalue $\lambda=2$.
$A(2,1,0)^{T}=(8,4,0)^{T}=4(2,1,0)^{T}$, so $(2,1,0)^{T}$ is an eigenvector with eigenvalue $\lambda=4$.

The third eigenvector can be found by multiplying the first column of $A-\lambda_{2} I$ by the matrix $A-\lambda_{1} I$. That is

$$
\mathbf{e}_{3}=\left(\begin{array}{ccc}
-5 & 14 & -5 \\
-3 & 8 & -3 \\
-5 & 10 & -5
\end{array}\right)\left(\begin{array}{l}
-7 \\
-3 \\
-5
\end{array}\right)=\left(\begin{array}{c}
18 \\
12 \\
30
\end{array}\right)
$$

We can take a factor of 6 out so that $\mathbf{e}_{3}=(3,2,5)^{T}$. Its eigenvalue is -2 .
Alternatively, we can find the other eigenvalue from the determinant

The roots are $\lambda=4$ and $\lambda= \pm 2$. The other eigenvector can be found by taking the cofactors of the elements of the first row of $A+2 I$. This gives a multiple of $(3,2,5)^{T}$.

The matrix P is the matrix whose columns are the eigenvectors, so

$$
P=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
-1 & 0 & 5
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

Write $\mathbf{x}=P \mathbf{y}$ and then $\dot{\mathbf{x}}=P \dot{\mathbf{y}}=A P \mathbf{y}+\mathbf{f}(t)$.
Then $P^{-1} P \dot{\mathbf{y}}=P^{-1} A P \mathbf{y}+P^{-1} \mathbf{f}(t)$
or $\dot{\mathbf{y}}=D \mathbf{y}+\mathbf{c}(t)$, where $\mathbf{c}(t)=P^{-1} \mathbf{f}(t)$. The inverse matrix P^{-1} is

$$
\left(\begin{array}{ccc}
5 / 4 & -5 / 2 & 1 / 4 \\
-1 / 2 & 2 & -1 / 2 \\
1 / 4 & -1 / 2 & 1 / 4
\end{array}\right)
$$

Therefore $c_{1}=5 f_{1} / 4-5 f_{2} / 2+f_{3} / 4, c_{2}=-f_{1} / 2+2 f_{2}-f_{3} / 2$ and $c_{3}=f_{1} / 4-f_{2} / 2+f_{3} / 4$.
12.

$$
\frac{d \mathbf{x}}{d t}=\binom{3}{3} e^{3 t}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right)\binom{1}{1} e^{3 t}
$$

We look for a second solution $(1,1)^{T} t e^{3 t}+\mathbf{w} e^{3 t}$. We get

$$
\binom{3 t+1+3 w_{1}}{3 t+1+3 w_{2}} e^{3 t}=\binom{3 t+2 w_{1}+w_{2}}{3 t-w_{1}+4 w_{2}} e^{3 t}
$$

Therefore

$$
w_{1}-w_{2}=-1 \quad \text { and } \quad w_{1}-w_{2}=-1
$$

We can take $w_{2}=1$ and $w_{1}=0$. The second solution is then $y=(1,1)^{T} t e^{3 t}+(0,1)^{T} e^{3 t}$ The general solution is then $y=A(1,1)^{T} e^{3 t}+B\left[(1,1)^{T} t e^{3 t}+(0,1)^{T} e^{3 t}\right]$

We take P to have the first column $(1,1)^{T}$ and second column $(0,1)^{T}$ Thus

$$
P=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad \text { and } \quad P^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)
$$

Writing $\mathbf{x}=P \mathbf{y}$

$$
\frac{d \mathbf{y}}{d t}=P^{-1} \frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \mathbf{y}+\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) \mathbf{f}=\left(\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right) \mathbf{y}+\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) \mathbf{f}
$$

The equations are now decoupled. The equation for y_{2} does not involve y_{1}.
We have $\dot{y}_{1}=3 y_{1}+y_{2}+f_{1}$ and $\dot{y}_{2}=3 y_{2}-f_{1}+f_{2}$
We have to solve $\dot{y}_{2}=3 y_{2}+e^{3 t}$. This is a first order linear equation whose integrating factor is $e^{-3 t}$. The solution is $y_{2}=(A+t) e^{3 t}$.

The equation for y_{1} is $\dot{y}_{1}=3 y_{1}+(A+t) e^{3 t}$. This is also a first order linear equation with integrating factor $e^{-3 t}$. The solution is $y_{1}=\left(B+A t+t^{2} / 2\right) e^{3 t}$. Then

$$
x_{1}=y_{1}=\left(B+A t+t^{2} / 2\right) e^{3 t}, \text { and } x_{2}=-y_{1}+y_{2}=\left(A-B-(A-1) t-t^{2} / 2\right) e^{3 t} .
$$

