MATH 201 Jan 2005

ORDINARY DIFFERENTIAL EQUATIONS

TIME ALLOWED: TWO HOURS AND A HALF

Instructions to candidates

Candidates should answer the WHOLE of Section A and THREE questions from Section B. Section A carries 55% of the available marks.

SECTION A

1. Solve the initial value problem:

$$
\frac{d^{2} y}{d x^{2}}+13 \frac{d y}{d x}+36 y=156 \cos (6 x), \quad y(0)=5, \quad y^{\prime}(0)=-13
$$

2. Show that $y=x$ is a solution of the differential equation

$$
\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0
$$

Find another linearly independent solution to this equation.
Write the differential equation above in the Sturm-Liouville self adjoint form.
3. Solve the two point boundary value problem:

$$
\frac{d^{2} y}{d x^{2}}+\lambda y=0, \quad y(0)=0, \quad y(5)=5
$$

given that $\lambda=\omega^{2}$ is a positive constant. Show that it is not possible to find a solution for all values of λ and find the values of λ for which there is no solution.
4. Given that λ is a positive constant find the eigenvalues and eigenfunctions for the boundary value problem:

$$
\frac{d^{2} y}{d x^{2}}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(2)=0
$$

5. Use a trial function of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

to find the solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}=x \frac{d y}{d x}+3 y
$$

Write the general solution in the form $y=A f(x)+B x g(x)$, where $A=y(0)$ and $B=y^{\prime}(0)$. Write down the first 3 non zero terms of the expansions of $f(x)$ and $g(x)$.

Show that these solutions converge for all finite values of x.
6. Explain what is meant by the terms ordinary point, singular point and regular singular point for the differential equation

$$
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0
$$

where $P(x), Q(x)$ and $R(x)$ are polynomials.
Find the singular points of the differential equation

$$
x^{3}\left(x^{2}-16\right)^{2} \frac{d^{2} y}{d x^{2}}+x^{2}(x+4) \frac{d y}{d x}+\left(x^{2}+1\right) y=0
$$

and for each singular point state whether it is regular or not.
7. Find the general solution of the differential equations:

$$
\frac{d \mathbf{x}}{d t}=\left(\begin{array}{ll}
3 & 6 \\
4 & 1
\end{array}\right) \mathbf{x}-\binom{20 e^{2 t}}{5 e^{2 t}}
$$

SECTION B

8. Show that when $\lambda \leq 0$ the boundary value problem

$$
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+(9+\lambda) y=0, \quad y(0)=0, \quad y(\pi)=0
$$

has no eigenfunctions, but that for appropriate values of $\lambda>0$, the eigenfunctions are:

$$
\phi_{n}(x)=e^{-3 x} \sin (n x), \quad n=1,2,3 \cdots
$$

Further, show that

$$
\int_{0}^{\pi} e^{6 x} \phi_{n}(x) \phi_{m}(x) d x=0 \quad n \neq m
$$

and evaluate

$$
\int_{0}^{\pi} e^{6 x} \phi_{n}^{2}(x) d x
$$

9. Use a trial function of the form:

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

to find a series solution for the differential equation:

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\lambda y=0 \tag{1}
\end{equation*}
$$

Show that the recurrence relation between the coefficients a_{n+2} and a_{n} is

$$
\frac{a_{n+2}}{a_{n}}=\frac{2 n-\lambda}{(n+1)(n+2)}
$$

Show that if $\lambda=2 m$, where m is a positive integer, one of these series terminates and is a finite polynomial. Write down this polynomial for each of the cases when $m=1,2,3$. Denote these polynomials by $H_{m}(x)$.

Show that the differential equation

$$
\frac{d}{d x}\left(e^{-x^{2}} \frac{d y}{d x}\right)+e^{-x^{2}} \lambda y=0
$$

is the Sturm-Liouville self adjoint form of equation (1).
Show that for $n, m=1,2,3$, the integrals

$$
\int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x) H_{m}(x) d x=0 \quad n \neq m
$$

10. Use a trial function of the form:

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+c}
$$

to find two linearly independent solutions of the differential equation:

$$
7 x \frac{d^{2} y}{d x^{2}}+(6-x) \frac{d y}{d x}-y=0 .
$$

Write down the first three terms of each series.
11. Show that the vectors $(1,0,-1)^{T}$ and $(2,1,0)^{T}$ are eigenvectors for the matrix

$$
A=\left(\begin{array}{lll}
-3 & 14 & -5 \\
-3 & 10 & -3 \\
-5 & 10 & -3
\end{array}\right)
$$

Find the eigenvalues for these two eigenvectors. Find the other eigenvector and the corresponding eigenvalue.
Find a matrix P such that

$$
P^{-1} A P=D,
$$

where D is a diagonal matrix whose elements should be stated.
Transform the set of differential equations:

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}+\mathbf{f}(t)
$$

into the form:

$$
\frac{d \mathbf{y}}{d t}=D \mathbf{y}+\mathbf{c}(t)
$$

where A is the matrix given above. Write down expressions for the components of $\mathbf{c}(t)$ in terms of the components of $\mathbf{f}(t)$.
12. Show that $\mathbf{x}=(1,1)^{T} e^{3 t}$ is one solution of

$$
\frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right) \mathbf{x}
$$

Find a second solution and hence write down the general solution.
Find a linear transformation, $\mathbf{x}=P \mathbf{y}$, which will decouple the differential equations

$$
\frac{d \mathbf{x}}{d t}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right) \mathbf{x}+\mathbf{f}(t)
$$

where $\mathbf{f}(t)$ is some known function of t and write down the decoupled differential equations. Solve these differential equations and hence determine $\mathbf{x}(t)$ when $\mathbf{f}(t)=(0,1)^{T} e^{3 t}$.

