MATH191 Exam September 2004, Solutions

1. The maximal domain is \mathbb{R} and the range is $[-1,1]$.

The graph is shown below. It crosses the y-axis at $y=1$, and the x-axis at $x=-3 \pi / 2,-\pi / 2, \pi / 2,3 \pi / 2$.

2. We have $f(0)=0, f^{\prime}(x)=-2 /(1-2 x)$, so $f^{\prime}(0)=-2$, and $f^{\prime \prime}(x)=-4 /(1-2 x)^{2}$, so $f^{\prime \prime}(0)=-4$.

Hence the Maclaurin series expansion of $f(x)$ up to the term in x^{2} is

$$
f(x)=-2 x-2 x^{2}+\cdots
$$

3.

a) $r=\sqrt{1+1}=\sqrt{2} \cdot \tan \theta=1 /-1=-1$, so since $x<0$ we have $\theta=\tan ^{-1}(-1)+$ $\pi=3 \pi / 4$.
b) $x=3 \cos (2 \pi / 3)=3(-1 / 2)=-3 / 2 . y=3 \sin (2 \pi / 3)=3 \sqrt{3} / 2$.
4.

$$
\begin{aligned}
\int_{-1}^{1}\left(e^{3 x}-\cosh x\right) d x & =\left[\frac{e^{3 x}}{3}-\sinh x\right]_{-1}^{1} \\
& =e^{3} / 3-\sinh (1)-e^{-3} / 3+\sinh (-1)=2 \sinh (3) / 3-2 \sinh (1)=4.328
\end{aligned}
$$

to three decimal places.
5. Differentiate the defining equation with respect to x to obtain

$$
4 x-2 y \frac{d y}{d x}-3 y-3 x \frac{d y}{d x}+2=0
$$

giving

$$
\frac{d y}{d x}=\frac{4 x-3 y+2}{3 x+2 y} .
$$

At $(x, y)=(1,1)$ this gives $\frac{d y}{d x}=\frac{3}{5}$.
Hence the equation of the tangent is

$$
y=1+3(x-1) / 5 \quad \text { or } \quad 5 y=3 x+2 .
$$

6.

a) By the product rule,

$$
\frac{d}{d x}\left(x^{2} \cosh x\right)=2 x \cosh x+x^{2} \sinh x .
$$

b) By the chain rule,

$$
\frac{d}{d x}(x+\sin x)^{4}=4(x+\sin x)^{3}(1+\cos x) .
$$

c) By the quotient rule,

$$
\frac{d}{d x}\left(\frac{x^{2}}{1+e^{x}}\right)=\frac{2 x\left(1+e^{x}\right)-x^{2} e^{x}}{\left(1+e^{x}\right)^{2}}
$$

7. $f^{\prime}(x)=6 x^{2}-18 x+12=6\left(x^{2}-3 x+2\right)=6(x-1)(x-2)$. Stationary points are given by solutions of $f^{\prime}(x)=0$, so there are exactly two stationary points, namely $x=1$ and $x=2$.

To determine their natures, $f^{\prime \prime}(x)=6(2 x-3)$ so $f^{\prime \prime}(1)<0$ and $f^{\prime \prime}(2)>0$. Hence $x=1$ is a local maximum and $x=2$ is a local minimum.
8.

$$
\begin{aligned}
z_{1}+z_{2} & =3+2 j \\
z_{1}-z_{2} & =1-4 j \\
z_{1} z_{2} & =(2-j)(1+3 j)=2+6 j-j-3 j^{2}=5+5 j \\
z_{1} / z_{2} & =\frac{(2-j)(1-3 j)}{(1+3 j)(1-3 j)}=\frac{-1-7 j}{10}
\end{aligned}
$$

9. $\sin ^{-1}(1 / 2)=\pi / 6$.

Hence the general solution of $\sin \theta=1 / 2$ is

$$
\theta= \begin{cases}\frac{\pi}{6}+2 n \pi & (n \in \mathbb{Z}) \\ \frac{5 \pi}{6}+2 n \pi & (n \in \mathbb{Z})\end{cases}
$$

10.

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =4 \mathbf{i}+\mathbf{k} \\
\mathbf{a}-\mathbf{b} & =2 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k} \\
|\mathbf{a}| & =\sqrt{3^{2}+1^{2}+1^{2}}=\sqrt{11} \\
|\mathbf{b}| & =\sqrt{1^{2}+1^{2}+2^{2}}=\sqrt{6} \\
\mathbf{a} \cdot \mathbf{b} & =3-1-2=0
\end{aligned}
$$

Hence the angle between \mathbf{a} and \mathbf{b} is $\pi / 2$.
11. The Maclaurin series expansion of $\sin x$ is

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots
$$

Hence
a)

$$
x \sin x=x^{2}-\frac{x^{4}}{3!}+\cdots
$$

b)

$$
\sin (2 x)=2 x-\frac{8 x^{3}}{3!}+\frac{32 x^{5}}{5!}-\cdots=2 x-\frac{4 x^{3}}{3}+\frac{4 x^{5}}{15}-\cdots
$$

c)

$$
\begin{aligned}
\sin ^{2} x & =\left(x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\cdots\right)\left(x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\cdots\right) \\
& =x^{2}-\frac{x^{4}}{3}+\cdots
\end{aligned}
$$

c) gives an approximation of $(0.1)^{2}-(0.1)^{4} / 3=0.01-0.0000333=0.0099667$ to $\sin ^{2}(0.1)$ (6 decimal places).
12. The radius of the convergence R of the power series

$$
\sum_{n=1}^{\infty} a_{n} x^{n}
$$

is given by

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

provided this limit exists.
In this case $a_{n}=1 / n^{2} 2^{n}$, so $\left.\left|a_{n} / a_{n+1}\right|=(n+1)^{2} 2^{n+1} /\left(n^{2} 2^{n}\right)=2((n+1) / n)\right)^{2}$, which tends to 2 as $n \rightarrow \infty$. Hence $R=2$.

When $x=-2$, the series becomes

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

This converges by the alternating series test, which states that

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n}
$$

converges if a_{n} is a decreasing sequence with $a_{n} \rightarrow 0$.
When $x=2$, the series becomes

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}},
$$

which converges (standard result).
Hence the series converges if and only if $-2 \leq x \leq 2$.
13. The graphs are as shown:

In $[0, \infty), 1-2 x^{2}$ decreases strictly from 1 to $-\infty$, and x^{6} increases strictly from 0 to ∞ : it follows that there is exactly one solution in $x>0$. By symmetry, there is exactly one solution in $x<0$.

Setting $f(x)=x^{6}+2 x^{2}-1$, we have $f^{\prime}(x)=6 x^{5}+4 x$, so the Newton-Raphson formula becomes

$$
x_{n+1}=x_{n}-\frac{x_{n}^{6}+2 x_{n}^{2}-1}{6 x_{n}^{5}+4 x_{n}} .
$$

Hence

$$
x_{1}=x_{0}-\frac{x_{0}^{6}+2 x_{0}^{2}-1}{6 x_{0}^{5}+4 x_{0}}=0.674360 .
$$

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{x_{1}^{6}+2 x_{1}^{2}-1}{6 x_{1}^{5}+4 x_{1}}=0.673350 . \\
& x_{3}=x_{2}-\frac{x_{2}^{6}+2 x_{2}^{2}-1}{6 x_{2}^{5}+4 x_{2}}=0.673348 .
\end{aligned}
$$

By symmetry, the best approximation available to the second solution of $f(x)=0$ is $x=-0.673348$.
14. For $x \leq 0$ we have $f(x)=x^{2}+2 x-1$, which has zeros at $x=-1 \pm \sqrt{2}$, of which only $-1-\sqrt{2}$ lies in the appropriate domain. The derivative is $f^{\prime}(x)=2 x+2$, so there is a stationary point at $x=-1$. Since $f^{\prime \prime}(x)=2$, the stationary point is a local minimum. $f(x)=1-2-1=-2$ at the stationary point. The gradient of $x^{2}+2 x-1$ at $x=0$ is 2 .

For $x<0$ we have $f(x)=2 /(x-2)$, which has no zeros and tends to -1 as $x \rightarrow 0$ and to 0 as $x \rightarrow \infty . f^{\prime}(x)=-2 /(x-2)^{2}$, so there are no stationary points, and $f(x)$ is decreasing in $(0,2) \cup(2, \infty)$. The gradient is $-1 / 2$ at $x=0$. There is a vertical asymptote at $x=2$.

The graph of $f(x)$ is therefore
$f(x)$ is not continuous at $x=2$, since 2 is not in its maximal domain.
$f(x)$ is not differentiable at $x=2$ (not in maximal domain), or at $x=0$ (since the pieces join with different gradients).
15. Let $z=\cos \theta+j \sin \theta$, so by de Moivre's theorem

$$
\begin{aligned}
z^{n} & =\cos n \theta+j \sin n \theta \\
z^{-n} & =\cos n \theta-j \sin n \theta
\end{aligned}
$$

Thus $z^{n}-z^{-n}=2 j \sin n \theta$.

In particular, $2 j \sin \theta=z-z^{-1}$ so

$$
\begin{aligned}
8 j^{3} \sin ^{3} \theta & =\left(z-z^{-1}\right)^{3} \\
& =z^{3}-3 z+3 z^{-1}-z^{-3} \\
& =\left(z^{3}-z^{-3}\right)-3\left(z-z^{-1}\right) \\
& =2 j \sin 3 \theta-6 j \sin \theta .
\end{aligned}
$$

Thus, since $j^{3}=-j$,

$$
4 \sin ^{3} \theta=-\sin 3 \theta+3 \sin \theta
$$

so $a=-1$ and $b=3$.
So

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin ^{3} x d x & =\frac{1}{4} \int_{0}^{\pi / 2}(3 \sin x-\sin (3 x)) d x \\
& =\frac{1}{4}\left[\frac{\cos (3 x)}{3}-3 \cos x\right]_{0}^{\pi / 2} \\
& =\frac{1}{4}\left(\frac{\cos (3 \pi / 2)-\cos (0)}{3}-3(\cos (\pi / 2)-\cos (0))\right) \\
& =\frac{1}{4}\left(\frac{-1}{3}+3\right)=2 / 3
\end{aligned}
$$

