MATH191 Exam September 2002, Solutions

1. The maximal domain is $(0, \infty)$.

The graph is shown below.

2. We have $f(0)=\ln (1)=0, f^{\prime}(x)=3(1+3 x)^{-1}$, so $f^{\prime}(0)=3$, and $f^{\prime \prime}(x)=$ $-9(1+3 x)^{-2}$, so $f^{\prime \prime}(0)=-9$.

Hence the Maclaurin series expansion of $f(x)$ up to the term in x^{2} is

$$
f(x)=3 x-\frac{9}{2} x^{2}+\cdots
$$

3.

a) This is a polynomial with only even powers, and hence is even.
b) Let $f(x)=x /\left(1+x^{2}\right)$. Then $f(-x)=(-x) /\left(1+(-x)^{2}\right)=-x /\left(1+x^{2}\right)=-f(x)$. Hence $f(x)$ is odd.
c) Let $f(x)=x \sinh x$. Then $f(-x)=(-x) \sinh (-x)=(-x)(-\sinh x)=x \sinh x=$ $f(x)$. Hence $f(x)$ is even.
4.

$$
\begin{aligned}
\int_{1}^{2} e^{x}+x^{-2} d x & =\left[e^{x}-x^{-1}\right]_{1}^{2} \\
& =e^{2}-e^{1}-\frac{1}{2}+1 \\
& =5.171
\end{aligned}
$$

to three decimal places.
5.
a) $\left(x^{2}-2 x-3\right) /(x-3)=x+1$, provided $x \neq 3$. Hence the limit exists and is equal to 4 .
b) By L'Hôpital's rule,

$$
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x}=\lim _{x \rightarrow 0} \frac{2 \cos (2 x)}{1} .
$$

Hence the limit exists and is equal to 2 .
c) Since $-1 \leq \sin (2 x) \leq 1$ for all x, we have $-1 / x \leq \sin (2 x) / x \leq 1 / x$ for $x>0$, and hence $\sin (2 x) / x \rightarrow 0$ as $x \rightarrow \infty$.
6.
a) By the product rule,

$$
\frac{d}{d x} e^{x} \cos x=e^{x} \cos x-e^{x} \sin x=e^{x}(\cos x-\sin x) .
$$

b) By the chain rule,

$$
\frac{d}{d x} \ln \left(1+x^{4}\right)=\frac{4 x^{3}}{1+x^{4}}
$$

c) By the quotient rule,

$$
\frac{d}{d x} \frac{\sin x}{1+x^{2}}=\frac{\left(1+x^{2}\right) \cos x-2 x \sin x}{\left(1+x^{2}\right)^{2}} .
$$

7. $f^{\prime}(x)=\frac{1}{x}-4 x$. Stationary points are given by solutions of $f^{\prime}(x)=0$, or $x^{2}=1 / 4$, which has two solutions, $x= \pm 1 / 2$. However, $-1 / 2$ is not in the maximal domain of $f(x)$, so there is just one stationary point, at $x=1 / 2$.

To determine its nature, note that $f^{\prime \prime}(x)=\frac{-1}{x^{2}}-4$ is negative when $x=1 / 2$. Hence the stationary point is a maximum.
8.

$$
\begin{aligned}
z_{1}+z_{2} & =4+3 j \\
z_{1}-z_{2} & =2-j \\
z_{1} z_{2} & =1+7 j \\
z_{1} / z_{2} & =\frac{(3+j)(1-2 j)}{(1+2 j)(1-2 j)}=\frac{5-5 j}{5}=1-j .
\end{aligned}
$$

9. $\tan ^{-1}(1)=\pi / 4$.

Hence the general solution of $\tan \theta=1$ is

$$
\theta=\frac{\pi}{4}+n \pi \quad(n \in \mathbb{Z})
$$

10.

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =4 \mathbf{i}-2 \mathbf{j} \\
\mathbf{a}-\mathbf{b} & =-2 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k} \\
|\mathbf{a}| & =\sqrt{1^{2}+2^{2}+1^{2}}=\sqrt{6} \\
|\mathbf{b}| & =\sqrt{3^{2}+0^{2}+1^{2}}=\sqrt{10} \\
\mathbf{a} \cdot \mathbf{b} & =3+0-1=2
\end{aligned}
$$

Hence the angle between \mathbf{a} and \mathbf{b} is $\cos ^{-1}(2 / \sqrt{60})=1.310$ to 3 decimal places.
11. The Maclaurin series expansion of $\sin x$ is

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots
$$

Hence
a)

$$
x \sin x=x^{2}-\frac{x^{4}}{3!}+\cdots
$$

b)

$$
\sin (2 x)=2 x-\frac{8 x^{3}}{3!}+\frac{32 x^{5}}{5!}-\cdots=2 x-\frac{4 x^{3}}{3}+\frac{4 x^{5}}{15}-\cdots
$$

c)

$$
\begin{aligned}
\sin ^{2} x & =\left(x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\cdots\right)\left(x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\cdots\right) \\
& =x^{2}-\frac{x^{4}}{3}+\cdots
\end{aligned}
$$

c) gives an approximation of $(0.1)^{2}-(0.1)^{4} / 3=0.01-0.0000333=0.0099667$ to $\sin ^{2}(0.1)$ (6 decimal places).
12. The radius of the convergence R of the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is given by

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|,
$$

provided this limit exists. In this case $a_{n}=(-1)^{n} /\left(n 2^{n}\right)$, so $\left|a_{n} / a_{n+1}\right|=2(n+1) / n=$ $2+2 / n$, which tends to 2 as $n \rightarrow \infty$. Hence $R=2$.

This means that the series converges for $-2<x<2$, and diverges for $x>2$ or $x<-2$.

When $x=2$, the series becomes

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n}
$$

This converges by the alternating series test, which states that

$$
\sum_{n=0}^{\infty}(-1)^{n} a_{n}
$$

converges if a_{n} is a decreasing sequence with $a_{n} \rightarrow 0$.
When $x=-2$, the series becomes

$$
\sum_{n=0}^{\infty} \frac{1}{n},
$$

which is divergent (standard result).
Hence the series converges precisely when $-2<x \leq 2$.
13. The graphs are as shown:

Since $\sinh x$ is increasing and $1-x$ is decreasing, there can be at most one solution to $\sinh x=1-x$. Since the functions take values 0 and 1 at $x=0$, and values $\sinh (1)>0$ and 0 at $x=1$, there is a solution in $[0,1]$.

Setting $f(x)=\sinh x+x-1$, we have $f^{\prime}(x)=\cosh x+1$, so the Newton-Raphson formula becomes

$$
x_{n+1}=x_{n}-\frac{\sinh x_{n}+x_{n}-1}{\cosh x_{n}+1} .
$$

Hence

$$
x_{1}=0.493357, \quad x_{2}=0.490074, \quad \text { and } x_{3}=0.490073
$$

to 6 decimal places.
14. For $x \leq 0$ we have $f(x)=x^{2}+x+1$, which has no real zeros. The derivative is $f^{\prime}(x)=2 x+1$, so there is a stationary point at $x=-1 / 2$. Since $f^{\prime \prime}(x)=2$, the stationary point is a local minimum. $f(x)=\frac{3}{4}$ at the stationary point. The gradient of $x^{2}+x+1$ at $x=0$ is 1 .

For $x>0$ we have $f(x)=1 /(1-x)$, which has no zeros and tends to 1 as $x=0$, and to 0 as $x \rightarrow \infty$. $f^{\prime}(x)=1 /(1-x)^{2}$, so there are no stationary points, and $f(x)$ is increasing in $(0,1) \cup(1, \infty)$; the gradient is 1 at $x=0$. There is a vertical asymptote at $x=1$.

The graph of $f(x)$ is therefore

$f(x)$ is not continuous at $x=1$, since 1 is not in its maximal domain.
$f(x)$ is not differentiable at $x=1$ (not in maximal domain): however, it is differentiable with derivative 1 at $x=0$.
15. Let $z=\cos \theta+j \sin \theta$, so by de Moivre's theorem

$$
\begin{aligned}
z^{n} & =\cos n \theta+j \sin n \theta \\
z^{-n} & =\cos n \theta-j \sin n \theta .
\end{aligned}
$$

Thus $z^{n}+z^{-n}=2 \cos n \theta$ and $z^{n}-z^{-n}=2 j \sin n \theta$.

In particular, $2 \cos \theta=z+z^{-1}$ so

$$
\begin{aligned}
16 \cos ^{4} \theta & =\left(z+z^{-1}\right)^{4} \\
& =z^{4}+4 z^{2}+6+4 z^{-2}+z^{-4} \\
& =\left(z^{4}+z^{-4}\right)+4\left(z^{2}+z^{-2}\right)+6 \\
& =2 \cos 4 \theta+8 \cos 2 \theta+6 .
\end{aligned}
$$

Thus

$$
8 \cos ^{4} \theta=\cos 4 \theta+4 \cos 2 \theta+3,
$$

so $a=1, b=4$, and $c=3$.
Similarly, $2 j \sin \theta=z-z^{-1}$, so

$$
\begin{aligned}
16 \sin ^{4} \theta & =\left(z-z^{-1}\right)^{4} \\
& =z^{4}-4 z^{2}+6-4 z^{-2}+z^{-4} \\
& =\left(z^{4}+z^{-4}\right)-4\left(z^{2}+z^{-2}\right)+6 \\
& =2 \cos 4 \theta-8 \cos 2 \theta+6
\end{aligned}
$$

Thus

$$
8 \sin ^{4} \theta=\cos 4 \theta-4 \cos 2 \theta+3,
$$

so $d=1, e=-4$, and $f=3$.
When $\theta=\pi / 2, \sin \theta=1, \cos \theta=0, \cos 2 \theta=-1$, and $\cos 4 \theta=1$.
Thus the identity for $8 \cos ^{4} \theta$ reads $0=1-4+3$; and the identity for $8 \sin ^{4} \theta$ reads $8=1-(-4)+3$: so both check.

