MATH191 Exam January 2004, Solutions

1. The maximal domain is \mathbb{R} and the range is $(0, \infty)$.

The graph is shown below. It crosses the y-axis at $y=1$.

2. We have $f(0)=1, f^{\prime}(x)=-(1+2 x)^{-3 / 2}$, so $f^{\prime}(0)=-1$, and $f^{\prime \prime}(x)=3(1+$ $2 x)^{-5 / 2}$, so $f^{\prime \prime}(0)=3$.

Hence the Maclaurin series expansion of $f(x)$ up to the term in x^{2} is

$$
f(x)=1-x+\frac{3 x^{2}}{2}+\cdots
$$

3.

a) $r=\sqrt{1+1}=\sqrt{2} \cdot \tan \theta=-1 /-1=1$, so since $x<0$ we have $\theta=\tan ^{-1}(1)+\pi=$ $5 \pi / 4$.
b) $x=2 \cos (-\pi / 3)=2(1 / 2)=1$. $y=2 \sin (-\pi / 3)=2(-\sqrt{3} / 2)=-\sqrt{3}$.
4.

$$
\begin{aligned}
\int_{1}^{3}\left(\frac{1}{x}+\sin (2 x)\right) d x & =\left[\ln (|x|)-\frac{\cos (2 x)}{2}\right]_{1}^{3} \\
& =\ln (3)-\ln (1)-\cos (6) / 2+\cos (2) / 2=0.410
\end{aligned}
$$

to three decimal places.
At $(x, y)=(4,2)$ this gives $\frac{d y}{d x}=\frac{2}{8}=\frac{1}{4}$.
Hence the equation of the tangent is

$$
y=2+(x-4) / 4 \quad \text { or } \quad y=(x+4) / 4 .
$$

5.

a) By the product rule,

$$
\frac{d}{d x}\left((1-x) e^{x}\right)=-e^{x}+(1-x) e^{x}=-x e^{x} .
$$

b) By the chain rule,

$$
\frac{d}{d x}\left(x^{2}+x+1\right)^{5}=5(2 x+1)\left(x^{2}+x+1\right)^{4} .
$$

c) By the quotient rule,

$$
\frac{d}{d x}\left(\frac{\sin x}{x^{2}+1}\right)=\frac{\left(x^{2}+1\right) \cos x-2 x \sin x}{\left(x^{2}+1\right)^{2}}
$$

6. $f^{\prime}(x)=\frac{1}{x}-2 x$. Stationary points are given by solutions of $f^{\prime}(x)=0$, or $2 x^{2}=1$, so there is exactly one stationary point, namely $x=1 / \sqrt{2}$.

To determine its nature, $f^{\prime \prime}(x)=-1 / x^{2}-2$ so $f^{\prime \prime}(1 / \sqrt{2})<0$, and $1 / \sqrt{2}$ is a local maximum.
7.

$$
\begin{aligned}
z_{1}+z_{2} & =2+3 j \\
z_{1}-z_{2} & =4+j \\
z_{1} z_{2} & =(3+2 j)(-1+j)=-3-2 j+3 j+2 j^{2}=-5+j \\
z_{1} / z_{2} & =\frac{(3+2 j)(-1-j)}{(-1+j)(-1-j)}=\frac{-1-5 j}{2} .
\end{aligned}
$$

8. $\cos ^{-1}(\sqrt{3} / 2)=\pi / 6$.

Hence the general solution of $\cos \theta=\sqrt{3} / 2$ is

$$
\theta= \pm \frac{\pi}{6}+2 n \pi \quad(n \in \mathbb{Z})
$$

9.

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =5 \mathbf{i}-2 \mathbf{j}-3 \mathbf{k} \\
\mathbf{a}-\mathbf{b} & =-\mathbf{i}-2 \mathbf{j}+5 \mathbf{k} \\
|\mathbf{a}| & =\sqrt{2^{2}+2^{2}+1^{2}}=\sqrt{9}=3 \\
|\mathbf{b}| & =\sqrt{3^{2}+4^{2}}=\sqrt{25}=5 \\
\mathbf{a} \cdot \mathbf{b} & =6+0-4=2 .
\end{aligned}
$$

Hence the angle between \mathbf{a} and \mathbf{b} is $\cos ^{-1}\left(\frac{2}{15}\right)=1.437$ to 3 decimal places.
10. The Maclaurin series expansion of e^{x} is

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\cdots
$$

Hence
a)

$$
x e^{x}=x+x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{6}+\cdots
$$

b)

$$
e^{2 x}=1+2 x+2 x^{2}+\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}+\cdots
$$

c) $\left(e^{x}\right)^{2}=e^{2 x}$, so the expansion is as in b).
d)

$$
e^{x^{2}}=1+x^{2}+\frac{x^{4}}{2}+\cdots
$$

The approximation is $1+\frac{1}{10}+\frac{1}{200}+\frac{1}{6000}+\frac{1}{240000}=1.105171$ to 6 decimal places.
11. The radius of the convergence R of the power series

$$
\sum_{n=1}^{\infty} a_{n} x^{n}
$$

is given by

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

provided this limit exists.
In this case $a_{n}=(-1)^{n} /\left(\sqrt{n} 3^{n}\right)$, so $\left|a_{n} / a_{n+1}\right|=\left(\sqrt{n+1} 3^{n+1}\right) /\left(\sqrt{n} 3^{n}\right)=3 \sqrt{n+1} / \sqrt{n}$, which tends to 3 as $n \rightarrow \infty$. Hence $R=3$.

When $x=3$, the series becomes

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}
$$

This converges by the alternating series test, which states that

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n}
$$

converges if a_{n} is a decreasing sequence with $a_{n} \rightarrow 0$.
When $x=-3$, the series becomes

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}},
$$

which diverges (by comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$, whose divergence is a standard result).
Hence the series converges if and only if $-3<x \leq 3$.
12. The graphs are as shown:

In $[0, \pi / 2], 2 x^{2}$ increases from 0 to $\pi^{2} / 2>1$, and $\cos x$ decreases from 1 to 0 : it follows that there is exactly one solution between 0 and $\pi / 2$. Since $2 x^{2}>1$ for $x>\pi / 2$, there are no solutions for $x>\pi / 2$. Hence there is exactly one solution in $x>0$. By symmetry, there is exactly one solution in $x<0$.

Setting $f(x)=2 x^{2}-\cos x$, we have $f^{\prime}(x)=4 x+\sin x$, so the Newton-Raphson formula becomes

$$
x_{n+1}=x_{n}-\frac{2 x_{n}^{2}-\cos x_{n}}{4 x_{n}+\sin x_{n}} .
$$

Hence

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{2 x_{0}^{2}-\cos x_{0}}{4 x_{0}+\sin x_{0}}=0.635531 . \\
& x_{2}=x_{1}-\frac{2 x_{1}^{2}-\cos x_{1}}{4 x_{1}+\sin x_{1}}=0.634561 . \\
& x_{3}=x_{2}-\frac{2 x_{2}^{2}-\cos x_{2}}{4 x_{2}+\sin x_{2}}=0.634560 .
\end{aligned}
$$

By symmetry, the best approximation available to the second solution of $f(x)=0$ is $x=-0.634560$.
13. For $x \leq 0$ we have $f(x)=x^{2}+x+1$, which has no real zeros. The derivative is $f^{\prime}(x)=2 x+1$, so there is a stationary point at $x=-1 / 2$. Since $f^{\prime \prime}(x)=2$, the stationary point is a local minimum. $f(x)=\frac{3}{4}$ at the stationary point. The gradient of $x^{2}+x+1$ at $x=0$ is 1 .

For $x>0$ we have $f(x)=1 /(1-x)$, which has no zeros and tends to 1 as $x=0$, and to 0 as $x \rightarrow \infty$. $f^{\prime}(x)=1 /(1-x)^{2}$, so there are no stationary points, and $f(x)$ is increasing in $(0,1) \cup(1, \infty)$; the gradient is 1 at $x=0$. There is a vertical asymptote at $x=1$.

The graph of $f(x)$ is therefore

$f(x)$ is not continuous at $x=1$, since 1 is not in its maximal domain.
$f(x)$ is not differentiable at $x=1$ (not in maximal domain): however, it is differentiable with derivative 1 at $x=0$.
14. Let $z=\cos \theta+j \sin \theta$, so by de Moivre's theorem

$$
\begin{aligned}
z^{n} & =\cos n \theta+j \sin n \theta \\
z^{-n} & =\cos n \theta-j \sin n \theta .
\end{aligned}
$$

Thus $z^{n}+z^{-n}=2 \cos n \theta$.
In particular, $2 \cos \theta=z+z^{-1}$ so

$$
\begin{aligned}
16 \cos ^{4} \theta & =\left(z+z^{-1}\right)^{4} \\
& =z^{4}+4 z^{2}+6+4 z^{-2}+z^{-4} \\
& =\left(z^{4}+z^{-4}\right)+4\left(z^{2}+z^{-2}\right)+6 \\
& =2 \cos 4 \theta+8 \cos 2 \theta+6 .
\end{aligned}
$$

Thus

$$
8 \cos ^{4} \theta=\cos 4 \theta+4 \cos 2 \theta+3
$$

so $a=1, b=4$, and $c=3$.
So

$$
\begin{aligned}
\int_{0}^{\pi / 6} \cos ^{4} x d x & =\frac{1}{8} \int_{0}^{\pi / 2} \cos (4 x)+4 \cos (2 x)+3 d x \\
& =\frac{1}{8}\left[\frac{\sin (4 x)}{4}+2 \sin (2 x)+3 x\right]_{0}^{\pi / 6} \\
& =\frac{1}{8}\left(\frac{\sin (2 \pi / 3)}{4}+2 \sin (\pi / 3)+\pi / 2\right) \\
& =\frac{1}{8}\left(\frac{\sqrt{3}}{8}+\sqrt{3}+\pi / 2\right)=9 \sqrt{3} / 64+\pi / 16
\end{aligned}
$$

(A solution in decimals, 0.439919 , is acceptable.)

