MATH191 Exam January 2002, Solutions

1. The range is \mathbb{R}.

The graph is shown below.

2. We have $f(0)=2, f^{\prime}(x)=\frac{1}{2}(4+x)^{-1 / 2}$, so $f^{\prime}(0)=1 / 4$, and $f^{\prime \prime}(x)=-\frac{1}{4}(4+$ $x)^{-3 / 2}$, so $f^{\prime \prime}(0)=-1 / 32$.

Hence the first three terms in the Maclaurin series expansion of $f(x)$ are

$$
f(x)=2+x / 4-x^{2} / 64+\cdots
$$

3.

a) This is a polynomial with both even and odd powers, so is neither even nor odd.
b) Let $f(x)=1 /\left(1+x^{4}\right)$. Then $f(-x)=1 /\left(1+(-x)^{4}\right)=1 /\left(1+x^{4}\right)=f(x)$. Hence $f(x)$ is even.
c) Let $f(x)=x \sin \left(x^{2}\right)$. Then $f(-x)=-x \sin \left((-x)^{2}\right)=-x \sin \left(x^{2}\right)=-f(x)$. Hence $f(x)$ is odd.
4.

$$
\begin{aligned}
\int_{0}^{1}\left(e^{-x}+1\right) d x & =\left[-e^{-x}+x\right]_{0}^{1} \\
& =e^{0}-e^{-1}+1-0=2-1 / e=1.632
\end{aligned}
$$

to three decimal places.
5.
a) $f(x)=\left(x^{2}+2 x-1\right) /(x-2)$ is continuous at $x=1$. Hence the limit exists and is equal to $f(1)=2 /(-1)=-2$.
b) By L'Hôpital's rule,

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin ^{2} x}=\lim _{x \rightarrow 0} \frac{-\sin x}{2 \sin x \cos x}=\lim _{x \rightarrow 0} \frac{-1}{2 \cos x}=-\frac{1}{2} .
$$

Hence the limit exists and is equal to $-1 / 2$.
c) The limit does not exist.
6.
a) By the product rule,

$$
\frac{d}{d x} x^{2} \sinh x=2 x \sinh x+x^{2} \cosh x .
$$

b) By the chain rule,

$$
\frac{d}{d x} \cos \left(1-x^{2}\right)=-(-2 x) \sin \left(1-x^{2}\right)=2 x \sin \left(1-x^{2}\right)
$$

c) By the quotient rule,

$$
\frac{d}{d x} \frac{e^{x}}{x}=\frac{x e^{x}-e^{x}}{x^{2}}=\frac{e^{x}(x-1)}{x^{2}}
$$

7. $f^{\prime}(x)=\frac{1}{x}-2$. Stationary points are given by solutions of $f^{\prime}(x)=0$, or $\frac{1}{x}=2$, or $x=1 / 2$.

To determine its nature, $f^{\prime \prime}(x)=-1 / x^{2}$, so $f^{\prime \prime}(1 / 2)<0$, and the stationary point is a local maximum.
8.

$$
\begin{aligned}
z_{1}+z_{2} & =3+2 j . \\
z_{1}-z_{2} & =1+4 j . \\
z_{1} z_{2} & =5+j . \\
z_{1} / z_{2} & =\frac{(2+3 j)(1+j)}{(1-j)(1+j)}=\frac{-1+5 j}{2} .
\end{aligned}
$$

9. $\cos ^{-1}(1 / 2)=\pi / 3$.

Hence the general solution of $\cos \theta=1 / 2$ is

$$
\theta= \pm \frac{\pi}{3}+2 n \pi \quad(n \in \mathbb{Z})
$$

10.

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =4 \mathbf{i}-\mathbf{j}+2 \mathbf{k} \\
\mathbf{a}-\mathbf{b} & =-2 \mathbf{i}+3 \mathbf{j} \\
|\mathbf{a}| & =\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3} \\
|\mathbf{b}| & =\sqrt{3^{2}+2^{2}+1^{2}}=\sqrt{14} \\
\mathbf{a} \cdot \mathbf{b} & =3-2+1=2
\end{aligned}
$$

Hence the angle between \mathbf{a} and \mathbf{b} is $\cos ^{-1}(2 / \sqrt{42})=1.257$ to 3 decimal places.
11. The Maclaurin series expansion of e^{x} is

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\cdots
$$

Hence
a)

$$
x e^{x}=x+x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{6}+\cdots
$$

b)

$$
e^{2 x}=1+2 x+2 x^{2}+\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}+\cdots
$$

c) $\left(e^{x}\right)^{2}=e^{2 x}$, so the expansion is as in b$)$.
d)

$$
e^{x^{2}}=1+x^{2}+\frac{x^{4}}{2}+\cdots
$$

The approximation is $1+\frac{1}{10}+\frac{1}{200}+\frac{1}{6000}+\frac{1}{240000}=1.105171$ to 6 decimal places.
12. The radius of the convergence R of the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is given by

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

provided this limit exists. In this case $a_{n}=1 /\left(n^{2}+1\right)$, so $\left|a_{n} / a_{n+1}\right|=\left((n+1)^{2}+\right.$ 1) $/\left(n^{2}+1\right)=\left(n^{2}+2 n+2\right) /\left(n^{2}+1\right)$, which tends to 1 as $n \rightarrow \infty$. Hence $R=1$.

When $x=-1$, the series becomes

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

This converges by the alternating series test, which states that

$$
\sum_{n=0}^{\infty}(-1)^{n} a_{n}
$$

converges if a_{n} is a decreasing sequence with $a_{n} \rightarrow 0$.
When $x=1$, the series becomes

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}
$$

which is convergent by comparison with $\sum \frac{1}{n^{2}}$ (whose convergence is a standard result).

Hence the series converges if and only if $-1 \leq x \leq 1$.
13. The graphs are as shown:

Since x^{3} is increasing and $1-x$ is decreasing, there can be at most one solution to $x^{3}=1-x$. Since the functions take values 0 and 1 at $x=0$, and values 1 and 0 at $x=1$, there is a solution in $[0,1]$.

Setting $f(x)=x^{3}+x-1$, we have $f^{\prime}(x)=3 x^{2}+1$, so the Newton-Raphson formula becomes

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}+x_{n}-1}{3 x_{n}^{2}+1} .
$$

Hence

$$
x_{1}=0.688461, \quad x_{2}=0.682359, \quad \text { and } x_{3}=0.682327
$$

to 6 decimal places.
14. For $x<0$ we have $f(x)=2 x^{2}+x-3=(x-1)(2 x+3)$, which has a zero at $x=-3 / 2$. The derivative is $f^{\prime}(x)=4 x+1$, so there is a stationary point at $x=-1 / 4$. Since $f^{\prime \prime}(x)=4$, the stationary point is a local minimum. $f(x)=-3 \frac{1}{8}$ at the stationary point. The gradient of $2 x^{2}+x-3$ at $x=0$ is 1 .

For $x \geq 0$ we have $f(x)=3 /(x-1)$, which has no zeros and is equal to -3 at $x=0$, and tends to 0 as $x \rightarrow \infty$. $f^{\prime}(x)=-3 /(x-1)^{2}$, so there are no stationary points, and $f(x)$ is decreasing in $(0,1) \cup(1, \infty)$; the gradient is -3 at $x=0$. There is a vertical asymptote at $x=1$.

The graph of $f(x)$ is therefore

$f(x)$ is not continuous at $x=1$, since 1 is not in its maximal domain.
$f(x)$ is not differentiable at $x=1$ (not in maximal domain), and at $x=0$ (no well-defined tangent to the graph at this point).
15. By de Moivre's theorem and the binomial theorem

$$
\cos 4 \theta+i \sin 4 \theta=(c+i s)^{4}=c^{4}+4 i c^{3} s-6 c^{2} s^{2}-4 i c s^{3}+s^{4},
$$

where $c=\cos \theta$ and $s=\sin \theta$.
Equating real parts gives

$$
\cos 4 \theta=c^{4}-6 c^{2} s^{2}+s^{4}
$$

By Pythagoras's theorem, $s^{2}=\left(1-c^{2}\right)$, so

$$
\cos 4 \theta=c^{4}-6 c^{2}\left(1-c^{2}\right)+\left(1-c^{2}\right)^{2}=8 c^{4}-8 c^{2}+1
$$

Hence $a=8, b=-8$, and $c=1$.
Equating imaginary parts gives

$$
\sin 4 \theta=4 c^{3} s-4 c s^{3}=4 \tan \theta\left(c^{4}-c^{2} s^{2}\right)
$$

Using $c^{2}=1-s^{2}$, this gives

$$
\sin 4 \theta=4 \tan \theta\left(\left(1-s^{2}\right)^{2}-\left(1-s^{2}\right) s^{2}\right)=4 \tan \theta\left(2 s^{4}-3 s^{2}+1\right) .
$$

Hence $d=2, e=-3$, and $f=1$.
When $\theta=\pi / 4, \sin \theta=\cos \theta=1 / \sqrt{2}$, so $s^{2}=c^{2}=1 / 2$.
Thus the RHS of the identity for $\cos 4 \theta$ becomes $8 / 2^{2}-8 / 2+1=2-4+1=-1$, which checks since the LHS is $\cos \pi=-1$.

Since $\tan \pi / 4=1$, the RHS of the identity for $\sin 4 \theta$ becomes $4(2 / 4-3 / 2+1)=$ $4(1 / 2-3 / 2+1)=0$, which checks since the LHS is $\sin \pi=0$.

