THE UNIVERSITY of LIVERPOOL

SUMMER 2006 EXAMINATIONS

```
Bachelor of Science : Year 1
Bachelor of Science : Year 2
Master of Chemistry : Year 1
Master of Physics : Year 1
```


MATHEMATICS

TIME ALLOWED : Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

Candidates should answer the WHOLE of Section A and THREE questions from Section B. Section A carries 55% of the available marks. The vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are the unit vectors in the directions of the coordinate axes $O x, O y$, and $O z$ respectively.

THE UNIVERSITY of LIVERPOOL

SECTIONA

1. For the matrices \mathbf{A} and \mathbf{B}, where

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 1 & 2 & 1 \\
4 & 1 & 6 & 2
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{rr}
-1 & 8 \\
2 & 1 \\
1 & 1 \\
12 & 6
\end{array}\right]
$$

evaluate $\mathbf{A B}$ and $\mathbf{B A}$. Comment on your result.
2. Find the magnitude of the vector $2 \mathbf{a}+\mathbf{b}-\mathbf{c}$, where

$$
\mathbf{a}=-4 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k}, \quad \mathbf{b}=\mathbf{i}+\mathbf{j}-5 \mathbf{k}, \quad \mathbf{c}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k} .
$$

[5 marks]
3. Find the scalar product of the vectors \mathbf{a} and \mathbf{b}, where

$$
\mathbf{a}=-\mathbf{i}+3 \mathbf{j}+\mathbf{k}, \quad \mathbf{b}=\mathbf{i}+2 \mathbf{j}-\mathbf{k} .
$$

Hence, find the angle in degrees between these vectors. Give your answer to three decimal places.
4. The position vector of a particle at time t is $\mathbf{r}(t)$, where

$$
\mathbf{r}(t)=t \sin (t) \mathbf{i}+t \cos (t) \mathbf{j}+\mathbf{k}
$$

Find the particle's velocity, speed and acceleration at time t. [4 marks]
5. A force \mathbf{F} of magnitude 5 N acting in the direction of $3 \mathbf{i}-4 \mathbf{k}$ moves a particle along a straight line from the point with coordinates $(1,2,-1)$ m to the point with coordinates $(7,-2,2) \mathrm{m}$. Find the work done by this force.
[5 marks]

THE UNIVERSITY of LIVERPOOL

6. For the vectors \mathbf{a} and \mathbf{b}, where

$$
\mathbf{a}=-3 \mathbf{i}+6 \mathbf{j}+\mathbf{k}, \quad \mathbf{b}=-\mathbf{i}-2 \mathbf{j}+\mathbf{k},
$$

verify that

$$
\mathbf{a} \times(\mathbf{a} \times \mathbf{b})=(\mathbf{a} \cdot \mathbf{b}) \mathbf{a}-(\mathbf{a} \cdot \mathbf{a}) \mathbf{b} .
$$

7. For the scalar field φ, where

$$
\varphi(x, y, z)=x^{3} y^{2} e^{z}
$$

find $\operatorname{grad} \varphi$ and verify that $\operatorname{curl}(\operatorname{grad} \varphi)=\mathbf{0}$.
8. Find the general solution of each of the following differential equations:
(i) $\sin (2 x) \frac{d y}{d x}+2 \sin ^{2}(x) y=2 \sin (x)$ [5 marks]
(ii) $(x-2 y) \frac{d y}{d x}=2 x-y$
9. Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+4 y=0
$$

given that $y=1$ and $d y / d x=0$ when $x=0$. What is the value of y when $x=\pi / \sqrt{3}$? Give your answer to three decimal places. [7 marks]

THE UNIVERSITY of LIVERPOOL

SECTIONB

10. (a) For the matrix \mathbf{A}, where

$$
\mathbf{A}=\left[\begin{array}{rrr}
-3 & 1 & 0 \\
2 & 0 & 0 \\
5 & -1 & 4
\end{array}\right],
$$

find \mathbf{A}^{-1}, the inverse of \mathbf{A}. Verify that $\operatorname{det}\left(\mathbf{A}^{-1}\right)=1 /(\operatorname{det}(\mathbf{A}))$.
(b) Use Cramer's Rule to solve the system of equations

$$
\begin{aligned}
& 2 x-y+3 z=4 \\
& x+9 y-2 z= \\
&-8 \\
& 4 x-8 y+11 z=15
\end{aligned}
$$

Check your answer by direct substitution.
11. (a) Points A, B, C have position vectors

$$
\overrightarrow{O A}=(1,-3,7), \overrightarrow{O B}=(2,1,1), \overrightarrow{O C}=(6,-1,2)
$$

(i) Find the area of the triangle $A B C$.
(ii) Find two unit vectors perpendicular to the plane of that triangle.
(iii) Find the length of the altitude from the vertex A to the side $B C$.
[3 marks]
(b) If $\mathbf{a}=\mathbf{i}-\mathbf{j}-\mathbf{k}, \mathbf{b}=-3 \mathbf{i}+4 \mathbf{j}+6 \mathbf{k}, \mathbf{c}=-2 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$, find the volume of the parallelepiped with sides $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
12. A particle of mass 2 kg is moving under the action of the force

$$
\mathbf{F}=-4 \cos (t) \mathbf{i}-4 \sin (t) \mathbf{j} \mathrm{N} .
$$

Find the position $\mathbf{r}(t)$ (in metres) of the particle at time t (in seconds) given that at time $t=0 \mathrm{~s}$ the particle is located at the point $(2,0,0)$ and has a velocity of $2 \mathbf{j}+\mathbf{k} \mathrm{ms}^{-1}$. Calculate the displacement and distance travelled by the particle over the time interval $0 \leq t \leq 2 \pi$.

THE UNIVERSITY of LIVERPOOL

13. (a) For the vector fields \mathbf{F} and \mathbf{G}, where

$$
\mathbf{F}=2 x y \mathbf{i}+e^{y} \mathbf{j}+2 z \mathbf{k}, \quad \mathbf{G}=-2 e^{z} \mathbf{i}-y^{2} z \mathbf{j}+2 \mathbf{k},
$$

verify the following identity

$$
\operatorname{div}(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot(\operatorname{curl} \mathbf{F})-\mathbf{F} \cdot(\operatorname{curl} \mathbf{G}) .
$$

[7 marks]
(b) Given that $\varphi(x, y, z)=x^{2}+y^{2}+z^{2}$, and $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ is the position vector, show that $\operatorname{curl}(\varphi \mathbf{r})=\mathbf{0}$.
(c) Given that $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ is a constant vector, and $\mathbf{r}=$ $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ is the position vector, find $\mathbf{r} \cdot \mathbf{a}$ and $\mathbf{r}-\mathbf{a}$. Hence, show that

$$
\operatorname{grad}(\mathbf{r} \cdot \mathbf{a})=\mathbf{a}, \quad \operatorname{div}(\mathbf{r}-\mathbf{a})=3, \quad \operatorname{curl}(\mathbf{r}-\mathbf{a})=\mathbf{0} .
$$

[4 marks]
14. (a) The displacement $x(t)$ of a particle satisfies the differential equation

$$
\frac{d^{2} x}{d t^{2}}-4 x=8 t^{2}-2 t
$$

The initial displacement is 0 m and the initial speed is $0 \mathrm{~ms}^{-1}$. Find the displacement at time t.
[10 marks]
(b) Show that the polynomial $P(x)$, where

$$
P(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)
$$

satisfies the Legendre differential equation

$$
\left(1-x^{2}\right) \frac{d^{2} P}{d x^{2}}-2 x \frac{d P}{d x}+20 P=0
$$

Verify that

$$
\int_{-1}^{1} P^{2}(x) d x=\frac{2}{9} .
$$

