

January 2007 EXAMINATIONS

Bachelor of Science	:	Year 1
Master of Chemistry	:	Year 1
Master of Earth Sciences		: Year 1
Master of Physics		Year 1

METHODS

TIME ALLOWED : Two Hours and a Half

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in Section A and THREE questions from Section B. Section A carries 55% of the available marks.

SECTION A

1. A function is defined by

$$f(x) = e^{-|x|/4}$$

for $-4 \le x \le 4$. Sketch this function.

[3 marks]

2. What is a one-to-one function? A function is given by

$$y = f(x) = \frac{x+3}{x-5}.$$

What is the domain and range? Find $f^{-1}(x)$ given that the function f(x) is one-to-one.

[5 marks]

3. Differentiate the following with respect to x

(i)
$$3x^8e^{-5x}$$
 , (ii) $\frac{x^2}{(4x+5)^2}$, (iii) $\sin(2x)\cosh^3(4x)$.
[9 marks]

4. Suppose that two variables satisfy the equation

$$x^{3} - y^{3}x^{2} + \frac{5}{x}\cos(y) = 7.$$

Find implicitly $\frac{dy}{dx}$ in terms of y and x.

[5 marks]

5. Determine the following indefinite integrals

(i)
$$\int (x^2 + 3x^4) dx$$
 , (ii) $\int \cosh^2(3x) dx$.
[5 marks]

6. Evaluate

(i)
$$\int_0^{\pi} \cos^2 x dx$$
 , (iii) $\int_0^{\infty} x e^{-3x^2} dx$.

[5 marks]

Paper Code MATH181 Page 2 of 6 CONTINUED/

7. (i) Evaluate the sum

$$\sum_{k=0}^{5} (3(2)^k + 5k)$$

(ii) What is the limit of the sequence

$$S_n = \frac{3n^4 + 12n^2 + 12}{n^4 - 4}$$

as $n \to \infty$.

6 marks

8. State de Moivre's theorem. If $z_1 = 2 + 3i$ and $z_2 = 1 + 2i$ evaluate $|z_1 z_2|$. Write $\ln(-1)$ in terms of complex numbers.

[5 marks]

9. Suppose that

$$d(x, y, z, t) = t^{3}(x^{2} + y^{2} - z^{2} - t^{2}).$$

What are $\frac{\partial d}{\partial x}$, $\frac{\partial d}{\partial t}$, $\frac{\partial d}{\partial y}$, and $\frac{\partial^2 d}{\partial x^2}$?

[4 marks]

10. Consider the function $\cos^2(3x) - \sin^2(3x)$. Obtain the Maclaurin series expansion of this function up to and including the term x^4 .

[4 marks]

11. Five particles decay electromagnetically with half lives of $(30, 40, 55, 60, \text{ and } 80) \times 10^{-19} s$. What is the mean half life and the variance of the half lives?

[4 marks]

SECTION B

12.

(i) Evaluate the definite integral

$$\int_0^1 \frac{2x^2 + 5x}{(x+2)(x+3)} dx.$$

[6 marks]

(ii) Evaluate the integral

$$\int x^2 \sqrt{dx^2 + dy^2}$$

on the curve $x = \cos \theta$ and $y = \sin \theta$ between $\theta = 0$ and $\theta = 2\pi$. [3 marks]

(iii) Using a suitable substitution or otherwise evaluate the indefinite integral

$$\int \frac{(\cos^2 x - \sin^2 x)}{(1 - 4\sin 2x)^2} dx.$$

[6 marks]

13. (i) By using polar coordinates or otherwise, integrate the function

$$F(x,y) = 2 + (x^2 + y^2)^2$$

over the area enclosed by the curve $x^2 + y^2 = 1$.

6 marks

(ii) Evaluate the integral

$$\int_{A} \left(xy + x^2y^2 + 3 \right) dxdy$$

where the area A is bounded by the lines y = 0, x = 0 and y = 1 - x. [9 marks]

Paper Code MATH181 Page 4 of 6

CONTINUED/

14. (i) Find in polar form all the roots of the equation

$$z^4 = 16(1+i)$$

and draw a diagram showing their position in the complex plane.

(ii) Use De Moivre's theorem to express $\cos^5 \theta$ in terms of $\cos 5\theta$, $\cos 3\theta$, and $\cos \theta$.

[6 marks]

6 marks

(iii) Using this result determine

$$\int \cos^5\theta d\theta.$$

[3 marks]

15. (i) Suppose that

$$I_n = \int_0^\infty x^n e^{-ax^2} dx$$

where n is a positive integer. What is the value of I_1 ? By differentiating with respect to a determine I_{n+2} in terms of I_n . Hence determine I_3 .

[6 marks]

(ii) Using the Maclaurin series expansion to the first three terms of $\cosh(x^2)$, compute the approximate value of

$$\int_0^1 \cosh(x^2) dx.$$

[5 marks]

(iii) Show that

$$\frac{d\tan^{-1}x}{dx} = \frac{1}{1+x^2}.$$

by using implicit differentiation.

[4 marks]

Paper Code MATH181 Page 5 of 6

CONTINUED/

16. (i) How many distinct arrangements are there of the word "MATHEMATICS"?

[3 marks]

(ii) Find the number of ways a magician can choose eight of the twelve white rabbits that are sitting in his top hat.

[3 marks]

(iii) A gas consists of two types of particles each with a Maxwellian distribution that are totally independent. It is enclosed in a box with a hole, such that the gas escapes slowly. For particle A the probability distribution is.

$$P(v)_A = 2\sqrt{\frac{m}{2\pi}}e^{-mv^2/2}, \ 1 = \int_0^\infty dv P(v)_A,$$

and for particle B

$$P(v)_B = 2\sqrt{\frac{M}{2\pi}}e^{-Mv^2/2}, \ 1 = \int_0^\infty dv P(v)_B$$

What is the average speed of a particle in the box? Sketch the two probability distributions on the same graph assuming M > m. What is the speed, $v_{coincide}$, for which the probability distributions coincide? If the escaping particles speed satisfies $v \ge v_{coincide}$, calculate the average speed of particle A escaping from the box.

[9 marks]