THE UNIVERSITY of LIVERPOOL

January 2007 EXAMINATIONS

```
    Bachelor of Science : Year 1
    Master of Chemistry : Year 1
Master of Earth Sciences : Year 1
    Master of Physics : Year 1
```


METHODS

TIME ALLOWED : Two Hours and a Half
INSTRUCTIONS TO CANDIDATES
Answer ALL questions in Section A and THREE questions from Section B. Section A carries 55% of the available marks.

THE UNIVERSITY of LIVERPOOL

SECTIONA

1. A function is defined by

$$
f(x)=e^{-|x| / 4}
$$

for $-4 \leq x \leq 4$. Sketch this function.
2. What is a one-to-one function? A function is given by

$$
y=f(x)=\frac{x+3}{x-5}
$$

What is the domain and range? Find $f^{-1}(x)$ given that the function $f(x)$ is one-to-one.
3. Differentiate the following with respect to x
(i) $3 x^{8} e^{-5 x}$,
(ii) $\frac{x^{2}}{(4 x+5)^{2}}$,
(iii) $\quad \sin (2 x) \cosh ^{3}(4 x)$.
[9 marks]
4. Suppose that two variables satisfy the equation

$$
x^{3}-y^{3} x^{2}+\frac{5}{x} \cos (y)=7 .
$$

Find implicitly $\frac{d y}{d x}$ in terms of y and x.
5. Determine the following indefinite integrals
(i) $\int\left(x^{2}+3 x^{4}\right) d x \quad$,
(ii) $\int \cosh ^{2}(3 x) d x$.
[5 marks]
6. Evaluate
(i) $\int_{0}^{\pi} \cos ^{2} x d x \quad$, (iii) $\quad \int_{0}^{\infty} x e^{-3 x^{2}} d x$.
[5 marks]

THE UNIVERSITY of LIVERPOOL

7. (i) Evaluate the sum

$$
\sum_{k=0}^{5}\left(3(2)^{k}+5 k\right)
$$

(ii) What is the limit of the sequence

$$
S_{n}=\frac{3 n^{4}+12 n^{2}+12}{n^{4}-4}
$$

as $n \rightarrow \infty$.
8. State de Moivre's theorem. If $z_{1}=2+3 i$ and $z_{2}=1+2 i$ evaluate $\left|z_{1} z_{2}\right|$. Write $\ln (-1)$ in terms of complex numbers.
9. Suppose that

$$
d(x, y, z, t)=t^{3}\left(x^{2}+y^{2}-z^{2}-t^{2}\right) .
$$

What are $\frac{\partial d}{\partial x}, \frac{\partial d}{\partial t}, \frac{\partial d}{\partial y}$, and $\frac{\partial^{2} d}{\partial x^{2}}$?
10. Consider the function $\cos ^{2}(3 x)-\sin ^{2}(3 x)$. Obtain the Maclaurin series expansion of this function up to and including the term x^{4}.
[4 marks]
11. Five particles decay electromagnetically with half lives of ($30,40,55$, 60 , and 80$) \times 10^{-19} s$. What is the mean half life and the variance of the half lives?

THE UNIVERSITY of LIVERPOOL

SECTIONB

12.

(i) Evaluate the definite integral

$$
\int_{0}^{1} \frac{2 x^{2}+5 x}{(x+2)(x+3)} d x
$$

(ii) Evaluate the integral

$$
\int x^{2} \sqrt{d x^{2}+d y^{2}}
$$

on the curve $x=\cos \theta$ and $y=\sin \theta$ between $\theta=0$ and $\theta=2 \pi$.
(iii) Using a suitable substitution or otherwise evaluate the indefinite integral

$$
\int \frac{\left(\cos ^{2} x-\sin ^{2} x\right)}{(1-4 \sin 2 x)^{2}} d x
$$

13. (i) By using polar coordinates or otherwise, integrate the function

$$
F(x, y)=2+\left(x^{2}+y^{2}\right)^{2}
$$

over the area enclosed by the curve $x^{2}+y^{2}=1$.
(ii) Evaluate the integral

$$
\int_{A}\left(x y+x^{2} y^{2}+3\right) d x d y
$$

where the area A is bounded by the lines $y=0, x=0$ and $y=1-x$.

THE UNIVERSITY of LIVERPOOL

14. (i) Find in polar form all the roots of the equation

$$
z^{4}=16(1+i)
$$

and draw a diagram showing their position in the complex plane.
[6 marks]
(ii) Use De Moivre's theorem to express $\cos ^{5} \theta$ in terms of $\cos 5 \theta, \cos 3 \theta$, and $\cos \theta$.
[6 marks]
(iii) Using this result determine

$$
\int \cos ^{5} \theta d \theta
$$

[3 marks]
15. (i) Suppose that

$$
I_{n}=\int_{0}^{\infty} x^{n} e^{-a x^{2}} d x
$$

where n is a positive integer. What is the value of I_{1} ? By differentiating with respect to a determine I_{n+2} in terms of I_{n}. Hence determine I_{3}.
[6 marks]
(ii) Using the Maclaurin series expansion to the first three terms of $\cosh \left(x^{2}\right)$, compute the approximate value of

$$
\int_{0}^{1} \cosh \left(x^{2}\right) d x
$$

(iii) Show that

$$
\frac{d \tan ^{-1} x}{d x}=\frac{1}{1+x^{2}}
$$

by using implicit differentiation.

THE UNIVERSITY of LIVERPOOL

16. (i) How many distinct arrangements are there of the word "MATHEMATICS"?
[3 marks]
(ii) Find the number of ways a magician can choose eight of the twelve white rabbits that are sitting in his top hat.

[3 marks]

(iii) A gas consists of two types of particles each with a Maxwellian distribution that are totally independent. It is enclosed in a box with a hole, such that the gas escapes slowly. For particle A the probability distribution is.

$$
P(v)_{A}=2 \sqrt{\frac{m}{2 \pi}} e^{-m v^{2} / 2}, 1=\int_{0}^{\infty} d v P(v)_{A}
$$

and for particle B

$$
P(v)_{B}=2 \sqrt{\frac{M}{2 \pi}} e^{-M v^{2} / 2}, 1=\int_{0}^{\infty} d v P(v)_{B}
$$

What is the average speed of a particle in the box? Sketch the two probability distributions on the same graph assuming $M>m$. What is the speed, $v_{\text {coincide }}$, for which the probability distributions coincide? If the escaping particles speed satisfies $v \geq v_{\text {coincide }}$, calculate the average speed of particle A escaping from the box.

