Candidates should answer the WHOLE of Section A and THREE questions from Section B. Section A carries 55% of the available marks.

SECTION A

1. A function is defined by

$$
f(x)=-|x+2|
$$

Sketch the function $f(x)$.
2. State the domain of the function

$$
y=f(x)=\frac{(x+1)}{(x-3)}
$$

Given that f is a one-to-one function, find $f^{-1}(x)$.
3. Differentiate with respect to x
(i) $x^{4} \sinh x$,
(ii) $\left(1+x^{3}\right)^{10}$, (iii) $\sqrt{1+e^{\sin x}}$.
[9 marks]
4. Given that

$$
y^{4}-2 x^{2} y^{2}+x \sqrt{1+x}=4
$$

find $\frac{d y}{d x}$ in terms of x and y.
5. Determine the following indefinite integrals

$$
\text { (i) } \quad \int\left(e^{4 x}+x^{3}\right) d x, \quad \text { (ii) } \quad \int \frac{x}{2 x+5} d x \text {. }
$$

[6 marks]
6. Evaluate
(i) $\int_{0}^{1} \frac{x}{\left(x^{2}+1\right)} d x$,
(ii) $\int_{0}^{\pi} x \cos x d x$.
7. (i) Evaluate the sum

$$
2 \sum_{k=0}^{10} 3^{k}
$$

(ii) Find the limit of the sequence

$$
y_{n}=\frac{2 n^{2}+1}{4 n^{2}+3}
$$

as $n \rightarrow \infty$.
8. Given that $z_{1}=1+i$ and $z_{2}=2+i$ determine, in the form $a+i b$,

$$
\text { (i) } 2 z_{1}-3 z_{2}, \quad \text { (ii) } \quad z_{1} z_{2}, \quad \text { (iii) } \quad\left|z_{1}\right| .
$$

Convert the complex number $2 e^{i \frac{\pi}{4}}$ into the form $a+i b$.
[5 marks]
9. Given that

$$
f(x, y)=x+2 x^{2} y^{2}+x \sqrt{1+y}
$$

find $f_{x}, f_{y}, f_{x y}, f_{x x}$ and $f_{y y}$.
10. Obtain the Maclaurin series expansion for $\left(1-x^{2}\right) \cos 2 x$ up to and including the term in x^{4}.
[4 marks]
11. A class of four students obtained the marks: $35,80,50$, and 60 . What is the mean and variance of the marks?

SECTION B

12. (a) Find the constants A and B for which

$$
\frac{1}{(x-2)(x+2)}=\frac{A}{x-2}+\frac{B}{x+2},
$$

is true.
(b) Evaluate

$$
\int_{0}^{1} \frac{1}{\left(x^{2}-4\right)} d x
$$

using the result in part (a) of this question.
(c) Use a suitable substitution to determine the indefinite integral

$$
\int \frac{1}{e^{2 x}-3 e^{x}} d x
$$

[6 marks]
(d) Determine whether the integrand below is even, odd, or neither, and use that observation to evaluate the integral

$$
\int_{-5}^{5}\left(x^{3}+x^{6} \sin x+\cos ^{3} x \tan x\right) d x .
$$

[3 marks]
13. (a) Evaluate

$$
\int_{0}^{1}\left(\int_{0}^{2}\left(x^{2} y+x y^{2}\right) d y\right) d x
$$

[5 marks]
(b) Using polar coordinates, or otherwise, integrate

$$
f(x, y)=\left(x^{2}+y^{2}\right)^{\frac{3}{2}}
$$

over the area enclosed by the curve $x^{2}+y^{2}=4$ and with the condition $y>0$.
(c) Evaluate

$$
\iint_{A}\left(6 y^{2} \cos x\right) d x d y
$$

where A is the region of the $x y$-plane bounded by the lines $y=\sin x, x=\frac{\pi}{2}$ and the x axis.
14. (a) Find in polar form all the roots of the equation

$$
z^{3}=-8 i
$$

and draw a diagram showing their position in the complex plane.
[4 marks]
(b) Use $\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$ to show that

$$
\sin ^{5} \theta=\frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta)
$$

[4 marks]
(c) Using the result in part (b) determine

$$
\int \sin ^{5} x d x
$$

[3 marks]
(d) Write

$$
\sqrt{1+i}
$$

in the form $a+i b$.
[4 marks]
15. (a) Sketch the graph

$$
y=\frac{x+4}{x-3} .
$$

[5 marks]
(b) Use the power series expansion of $\cos \sqrt{x}$ up to order x^{3} to obtain an approximate estimate for the integral

$$
\int_{0}^{1} \cos \sqrt{x} d x
$$

correct to three decimal places.
(c) Given that the slope for $\sec ^{-1} x$ is positive for $x>0$, show that

$$
\frac{d \sec ^{-1} x}{d x}=\frac{1}{x \sqrt{x^{2}-1}} .
$$

16. (a) How many distinct arrangements are there of the word "London"?
[3 marks]
(b) A committee of seven members is to be divided into three subcommittees, two of which are size 2 , and one is size 3 . How many ways can this be done?
[3 marks]
(c) A courier service buys 8 cars from a garage. There is a problem with 6% of the cars sold from the garage. The occurrence of the problem with the cars is random.

Determine the probability that for the cars from the garage:
(i) exactly three cars have a problem;
(ii) less than two cars have a problem.
[5 marks]
(d) If N people tell you their birthday. What is the value of N such that the probability of meeting a person who shares your birthday is 0.5 ? Ignore leap years.

