

THE UNIVERSITY of LIVERPOOL

SUMMER 2006 EXAMINATIONS

```
Bachelor of Science : Year 1
Bachelor of Science : Year 2
Master of Chemistry : Year 1
    Master of Physics : Year 1
```

VECTORS AND DIFFERENTIAL EQUATIONS

TIME ALLOWED : Two Hours

INSTRUCTIONS TO CANDIDATES

Candidates should answer FOUR questions out of SIX. The vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are the unit vectors in the directions of the coordinate axes $O x, O y$ and $O z$, respectively.

THE UNIVERSITY of LIVERPOOL

1. (a) For the vectors \mathbf{a}, \mathbf{b} and \mathbf{c}, where

$$
\mathbf{a}=-\mathbf{i}+3 \mathbf{j}+\mathbf{k}, \quad \mathbf{b}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}, \quad \mathbf{c}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k},
$$

find the magnitude of the vector $2 \mathbf{a}+\mathbf{b}-\mathbf{c}$.
[5 marks]
Find the projection of the vector \mathbf{c} onto the line passing through the points $(-6,1,1)$ and $(3,2,-4)$.
[5 marks]
Find the scalar product of the vectors \mathbf{a} and \mathbf{b}. Hence, find the angle in degrees between these vectors. Give your answer to three decimal places.
[5 marks]
Show that the vector

$$
(|\mathbf{b}| \mathbf{a}+|\mathbf{a}| \mathbf{b}) /(|\mathbf{a}||\mathbf{b}|)
$$

bisects the angle between \mathbf{a} and \mathbf{b}.
[Hint: Show that this vector makes the same angle with a as it does with b.]
[5 marks]
(b) The points $A(1,-2,1), B(0,1,6)$ and $C(-3,4,-2)$ form a triangle. The line from the vertex A to the midpoint M of the side $B C$ is called a median. Show that $\overrightarrow{A M}=(\overrightarrow{A B}+\overrightarrow{A C}) / 2$. Hence, find the distance between the vertex A and the point M.
2. (a) For the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d}, where
$\mathbf{a}=-3 \mathbf{i}+6 \mathbf{j}+\mathbf{k}, \quad \mathbf{b}=-\mathbf{i}-2 \mathbf{j}+\mathbf{k}, \quad \mathbf{c}=-4 \mathbf{i}+6 \mathbf{k}, \quad \mathbf{d}=\mathbf{i}-2 \mathbf{j}+7 \mathbf{k}$,
verify that

$$
\mathbf{a} \times(\mathbf{a} \times \mathbf{b})=(\mathbf{a} \cdot \mathbf{b}) \mathbf{a}-(\mathbf{a} \cdot \mathbf{a}) \mathbf{b},
$$

and

$$
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) .
$$

[13 marks]
(b) Find the area of the triangle with vertices $A(1,-3,7), B(2,1,1)$ and $C(6,-1,2)$. Find two unit vectors perpendicular to the plane of that triangle.
(c) If $\mathbf{a}=\mathbf{i}-\mathbf{j}-\mathbf{k}, \mathbf{b}=-3 \mathbf{i}+4 \mathbf{j}+6 \mathbf{k}, \mathbf{c}=-2 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$, find the volume of the parallelepiped with sides $\mathbf{a}, \mathbf{b}, \mathbf{c}$.

THE UNIVERSITY of LIVERPOOL

3. (a) Find the work done by the force $\mathbf{F}=3 \mathbf{i}-4 \mathbf{k} \mathrm{~N}$ in moving an object along a straight line from the point with coordinates $(1,2,-1) \mathrm{m}$ to the point with coordinates $(7,-2,2) \mathrm{m}$.

Given that \mathbf{F} is applied at the point $(2,0,1) \mathrm{m}$, find the moment vector \mathbf{m} of \mathbf{F} about the origin.
(b) The position vector of a particle at time t is $\mathbf{r}(t)$, where

$$
\mathbf{r}(t)=t \sin (t) \mathbf{i}+t \cos (t) \mathbf{j}+\mathbf{k}
$$

Find the particle's velocity, speed and acceleration at time t. [4 marks]
(c) A particle of mass 2 kg is moving under the action of the force

$$
\mathbf{F}=-4 \cos (t) \mathbf{i}-4 \sin (t) \mathbf{j} \mathrm{N} .
$$

Find the position $\mathbf{r}(t)$ (in metres) of the particle at time t (in seconds) given that at time $t=0 \mathrm{~s}$ the particle is located at the point $(2,0,0)$ and has a velocity of $2 \mathbf{j}+\mathbf{k ~ m s}^{-1}$.

Calculate the displacement and distance travelled by the particle over the time interval $0 \leq t \leq 2 \pi$.

THE UNIVERSITY of LIVERPOOL

4. (a) Find the general solution of each of the following differential equations:

$$
\begin{array}{ll}
\text { (i) } 2 y \frac{d y}{d x}=e^{x-y^{2}} & {[4 \text { marks }]} \\
\text { (ii) } \sin (2 x) \frac{d y}{d x}+2 \sin ^{2}(x) y=2 \sin (x) & {[5 \text { marks }]} \\
\text { (iii) }(x-2 y) \frac{d y}{d x}=2 x-y & {[8 \text { marks }]}
\end{array}
$$

(b) The differential equation governing the velocity v of a falling object of mass m subjected to air resistance proportional to the instantaneous velocity is given by

$$
m \frac{d v}{d t}=m g-k v
$$

where g is the acceleration due to gravity, and k is a positive constant. If $m=50 \mathrm{~kg}, g=9.8 \mathrm{~m} / \mathrm{sec}^{2}, k=2 \mathrm{~kg} / \mathrm{sec}$, and $v(0)=3 \mathrm{~m} / \mathrm{sec}$, find the velocity v at time t. [6 marks]
Find the acceleration at $t=1 \mathrm{sec}$.

THE UNIVERSITY of LIVERPOOL

5. (a) For the scalar field φ, where

$$
\varphi(x, y, z)=x^{3} y^{2} e^{z}
$$

find $\operatorname{grad} \varphi$ and verify that $\operatorname{curl}(\operatorname{grad} \varphi)=\mathbf{0}$.
(b) For the vector fields \mathbf{F} and \mathbf{G}, where

$$
\mathbf{F}=2 x y \mathbf{i}+e^{y} \mathbf{j}+2 z \mathbf{k}, \quad G=-2 e^{z} \mathbf{i}-y^{2} z \mathbf{j}+2 \mathbf{k},
$$

verify the following identity

$$
\operatorname{div}(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot(\operatorname{curl} \mathbf{F})-\mathbf{F} \cdot(\operatorname{curl} \mathbf{G}) .
$$

[7 marks]
(c) Given that $\varphi(x, y, z)=x^{2}+y^{2}+z^{2}$, and $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ is the position vector, show that $\operatorname{curl}(\varphi \mathbf{r})=\mathbf{0}$.
(d) Given that $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ is a constant vector, and $\mathbf{r}=$ $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ is the position vector, find $\mathbf{r} \cdot \mathbf{a}$ and $\mathbf{r}-\mathbf{a}$. Hence, show that

$$
\operatorname{grad}(\mathbf{r} \cdot \mathbf{a})=\mathbf{a}, \quad \operatorname{div}(\mathbf{r}-\mathbf{a})=3, \quad \operatorname{curl}(\mathbf{r}-\mathbf{a})=\mathbf{0} .
$$

(e) For the scalar field φ and the vector field \mathbf{F}, where

$$
\varphi(x, y, z)=\sin (x z), \quad \mathbf{F}=-y z \mathbf{j}-6 x^{3} \mathbf{k}
$$

find $\operatorname{div}(\varphi \mathbf{F})$ and $\operatorname{curl}(\varphi \mathbf{F})$.

THE UNIVERSITY of LIVERPOOL

6. (a) Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+4 y=0
$$

given that $y=1$ and $d y / d x=0$ when $x=0$. What is the value of y when $x=\pi / \sqrt{3}$? Give your answer to three decimal places. [7 marks]
(b) The displacement $x(t)$ of a particle satisfies the differential equation

$$
\frac{d^{2} x}{d t^{2}}-4 x=8 t^{2}-2 t
$$

Find the displacement $x(t)$ (in metres) of the particle at time t (in seconds) given that at time $t=0 \mathrm{~s}$ the displacement of the particle is 0 m and its speed is $0 \mathrm{~ms}^{-1}$.
[10 marks]
(c) Show that the polynomial $P(x)$, where

$$
P(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)
$$

satisfies the Legendre differential equation

$$
\left(1-x^{2}\right) \frac{d^{2} P}{d x^{2}}-2 x \frac{d P}{d x}+20 P=0
$$

Verify that

$$
P(x)=\frac{1}{384} \frac{d^{4}}{d x^{4}}\left(\left(x^{2}-1\right)^{4}\right),
$$

and

$$
\int_{-1}^{1} P^{2}(x) d x=\frac{2}{9} .
$$

