THE UNIVERSITY of LIVERPOOL

SECTION A

1. Prove by induction that, for every positive integer n,
$4^{2 n}-1$ is divisible by 15 .
[6 marks]
2. Find the greatest common divisor d of 7614 and 3713 , and find integers s and t such that

$$
d=7614 s+3713 t .
$$

[6 marks]
3. In each of the following cases find the solutions (if any) of the given linear congruence:
(a) $10 x \equiv 14 \bmod 35 ;$
(b) $10 x \equiv 14 \bmod 36 ;$
(c) $10 x \equiv 14 \bmod 37$.
[10 marks]
4. State Fermat's Theorem.

Show that $4^{91}+5^{90}$ is divisible by 89 .
5. Let A be the set consisting of the three elements a, b and c, and B the set consisting of the two elements 0 and 1 . List all the maps $f: A \rightarrow B$ and say which (if any) of these are surjective.

Say why it is not possible for any map $f: A \rightarrow B$ to be injective. [8 marks]
6. Let π, ρ be the permutations

$$
\pi=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 7 & 1 & 3 & 2 & 6 & 8 & 5
\end{array}\right), \rho=(1684)(6245) .
$$

Write π, ρ, π^{2} and $\rho \pi$ as products of disjoint cycles and determine their orders and signs.
[8 marks]
7. List the elements of the group G_{16} of invertible congruence classes modulo 16. Construct a multiplication table for this group.

Find the order of each element of the group.
[11 marks]

THE UNIVERSITY of LIVERPOOL

SECTION B

8. (a) Find the inverse of 65 modulo 412.
[6 marks]
(b) Find the smallest positive integer n which satisties the simultaneous congruences

$$
x \equiv 21 \bmod 31, \quad x \equiv 3 \bmod 15, \quad x \equiv 4 \bmod 26
$$

Find also the next smallest integer satisfying these congruences. [9 marks]
9. State the axioms for a group.

In each of the following, determine which of the group axioms are satisfied. [You may assume that ordinary addition and multiplication, and multiplication modulo n, are associative.]
(a) The set of odd integers under addition;
(b) the set $\{1,3,7,9\}$ under multiplication modulo 20;
(c) the set of rational numbers under multiplication.
[15 marks]
10.(a) Say what it means for a group to be cyclic.

List the elements of the group G_{9} of invertible congruence classes modulo 9. Determine whether or not G_{9} is cyclic.
(b) Say what it means for a subset H of a group G to be a subgroup of G.

Let $D(4)$ denote the group of symmetries of a square. The element a of $D(4)$ is defined as the anticlockwise rotation through $\pi / 2$.

Let $H=\left\{e, a, a^{2}, a^{3}\right\}$. By constructing a multiplication table for H, or otherwise, show that H is a subgroup of $D(4)$. Show further that H is cyclic and determine the orders of all elements of H.
[10 marks]

THE UNIVERSITY of LIVERPOOL

11. A group code has generator matrix

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

List the codewords and state how many errors are detected and how many are corrected by this code, giving reasons for your answers.

Write down the parity check matrix and a table of syndromes for this code for all possible single digit errors in transmission.

Using the following letter to number equivalents:

X	W	R	L	F	E	D	A
000	001	010	100	011	101	110	111

correct and read the received message:
$\begin{array}{lllllll}0111110 & 1110001 & 0111011 & 1011010 & 1010111 & 1001010 & 1011101\end{array}$
1001101.
[15 marks]

