THE UNIVERSITY of LIVERPOOL

SECTION A

1. Prove by induction that, for every positive integer n,

$$
\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

2. Find the greatest common divisor d of 4171 and 1806 , and find integers s and t such that

$$
d=4171 s+1806 t
$$

[6 marks]
3. Find the inverse of 102 modulo 337.
4. In each of the following cases find the solutions (if any) of the given linear congruence:
(a) $15 x \equiv 10 \bmod 33$;
(b) $15 x \equiv 10 \bmod 35$;
(c) $15 x \equiv 10 \bmod 37$.
[10 marks]
5. Let A be the set consisting of the two elements a and b, and B the set consisting of the three elements 0,1 and 2 . List all the maps $f: A \rightarrow B$ and say which (if any) of these are injective.

Say why it is not possible for any map $f: A \rightarrow B$ to be surjective. [8 marks]
6. Let π, ρ be the permutations

$$
\pi=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 8 & 2 & 5 & 7 & 6 & 1 & 3
\end{array}\right), \rho=(3572)(861)
$$

Write π, ρ, ρ^{2} and $\pi \rho$ as products of disjoint cycles and determine their orders and signs.
7. List the elements of the group G_{18} of invertible congruence classes modulo 18. Construct a multiplication table for this group.

Find the order of each element of the group.
[11 marks]

THE UNIVERSITY of LIVERPOOL

SECTION B

8. (a) Solve the simultaneous congruences

$$
x \equiv 11 \bmod 24, \quad x \equiv 7 \bmod 23
$$

expressing your answer in the form $x \equiv a \bmod n$ for suitable a and n. [6 marks]
(b) State Fermat's Theorem.

Find
(i) the smallest positive integer k such that $2^{k} \equiv 1 \bmod 11$ (the order of 2 modulo 11);
(ii) the order of 3 modulo 11;
(iii) the remainder when 5^{22} is divided by 11 .
9. State the axioms for a group.

In each of the following, determine which of the group axioms are satisfied. [You may assume that ordinary multiplication, and multiplication modulo n, are associative.]
(a) The set of negative integers under multiplication;
(b) the set of integers under division;
(c) the set $\{1,3,7,9\}$ under multiplication modulo 10 .
[15 marks]
10.(a) Let $D(5)$ denote the group of symmetries of a regular pentagon. The element a of $D(5)$ is defined as the anti-clockwise rotation through $2 \pi / 5$ and b as reflection in one of the lines joining a vertex to the mid-point of the opposite side. Show that $a b=b a^{-1}$ and $a^{2} b=b a^{3}$.
[7 marks]
(b) Say what it means for a subset H of a group G to be a subgroup of G.

Let $S(4)$ denote the group of permutations of $\{1,2,3,4\}$, and let

$$
H=\{e,(12)(34),(13)(24),(14)(23)\}
$$

By constructing a multiplication table for H, or otherwise, show that H is a subgroup of $S(4)$.
[8 marks]

THE UNIVERSITY of LIVERPOOL

11. A group code has generator matrix

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

List the codewords and state how many errors are detected and how many are corrected by this code, giving reasons for your answers.

Write down the parity check matrix and a table of syndromes for this code for all possible single digit errors in transmission.

Using the following letter to number equivalents:

U	L	A	T	R	C	E	X
000	001	010	100	011	101	110	111

correct and read the received message:
$\begin{array}{lllllll}0110111 & 1110110 & 1011100 & 1001011 & 1000000 & 0101010 & 1100110\end{array}$
0111110.
[15 marks]

