SECTION A

1. Prove by induction that, for every positive integer n,

$$
n^{5}-n \text { is divisible by } 5
$$

[6 marks]
2. Find the greatest common divisor d of 1071 and 2583 , and find integers s and t such that

$$
d=1071 s+2583 t
$$

[6 marks]
3. Find the inverse of 27 modulo 340 .
4. In each of the following cases find the solutions (if any) of the given linear congruence:
(a) $10 x \equiv 15 \bmod 33$;
(b) $10 x \equiv 15 \bmod 34$;
(c) $10 x \equiv 15 \bmod 35$.
5. Let A be the set consisting of the three elements a, b and c, and B the set consisting of the two elements 1 and 2 . List the six surjective maps $f: A \rightarrow B$.

Say why it is not possible for any map $f: A \rightarrow B$ to be injective.
Give an example of an injective map $g: B \rightarrow A$.
6. Let π, ρ be the permutations

$$
\pi=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 2 & 5 & 3 & 1 & 7 & 8 & 6
\end{array}\right), \rho=(1372)(4216)
$$

Write π, ρ, π^{2} and $\pi \rho$ as products of disjoint cycles and determine their orders and signs.
[8 marks]
7. List the elements of the group G_{18} of invertible congruence classes modulo 18. Construct a multiplication table for this group.

Find the order of each element of the group.
[11 marks]

SECTION B

8. (a) Solve the simultaneous congruences

$$
x \equiv 14 \bmod 25, \quad x \equiv 11 \bmod 23,
$$

expressing your answer in the form $x \equiv a \bmod n$ for suitable a and n. [6 marks]
(b) Define Euler's function $\phi(n)$ for every integer $n>1$. Write down a formula for $\phi(p q)$, where p and q are distinct primes.

Find $\phi(91)$.
Determine the remainder when each of the following numbers is divided by 91:

$$
\text { (i) } 15^{72} ; \quad \text { (ii) } 15^{73} ; \quad \text { (iii) } 15^{74} \text {. }
$$

9. State the axioms for a group.

In each of the following, determine which of the group axioms are satisfied. [You may assume that ordinary multiplication, and multiplication modulo n, are associative.]
(a) The set of integers under subtraction;
(b) the set of real numbers under multiplication;
(c) the $\operatorname{set}\{1,7,13,19\}$ under multiplication modulo 30 .
[15 marks]
10. Let $D(4)$ denote the group of symmetries of a square. The element a of $D(4)$ is defined as the anticlockwise rotation through $\pi / 2$ and b as reflection in one of the diagonals.
(i) Draw a picture of the square showing the effects of a and b.
(ii) Express a and b as permutations of the vertices.
[2 marks]
(iii) Express $a b, b a$ and a^{3} as permutations. Hence show that $b a \neq a b$ and $b a=a^{3} b$.
[5 marks]
(iv) Let $H=\left\{e, a^{2}, a b, a^{3} b\right\}$. Show that H is a subgroup of $D(4)$. [You may find it useful to construct a multiplication table for H.]
[6 marks]
11. A group code has generator matrix

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right) .
$$

List the codewords and state how many errors are detected and how many are corrected by this code, giving reasons for your answers.

Write down the parity check matrix and a table of syndromes for this code for all possible single digit errors in transmission.

Using the following letter to number equivalents:

A	B	D	E	O	R	V	Y
000	001	010	100	011	101	110	111

correct and read the received message:

101101	110111	100101	101010	110000	011110	011101
110011	111000.					

[15 marks]

