SECTION A

1. Prove by induction that, for every positive integer n,

$$n^5 - n$$
 is divisible by 5.

[6 marks]

2. Find the greatest common divisor d of 1071 and 2583, and find integers s and t such that

$$d = 1071s + 2583t.$$

[6 marks]

3. Find the inverse of 27 modulo 340. [6 marks]

4. In each of the following cases find the solutions (if any) of the given linear congruence:

- (a) $10x \equiv 15 \mod 33;$
- (b) $10x \equiv 15 \mod 34;$

(c) $10x \equiv 15 \mod 35.$ [10 marks]

5. Let A be the set consisting of the three elements a, b and c, and B the set consisting of the two elements 1 and 2. List the six surjective maps $f : A \to B$.

Say why it is not possible for any map $f: A \to B$ to be injective.

Give an example of an injective map $g: B \to A$. [8 marks]

6. Let π , ρ be the permutations

 $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 2 & 5 & 3 & 1 & 7 & 8 & 6 \end{pmatrix}, \ \rho = (1372)(4216).$

Write π , ρ , π^2 and $\pi\rho$ as products of disjoint cycles and determine their orders and signs. [8 marks]

7. List the elements of the group G_{18} of invertible congruence classes modulo 18. Construct a multiplication table for this group.

Find the order of each element of the group. [11 marks]

CONTINUED

SECTION B

8. (a) Solve the simultaneous congruences

$$x \equiv 14 \mod 25, x \equiv 11 \mod 23,$$

expressing your answer in the form $x \equiv a \mod n$ for suitable a and n. [6 marks]

(b) Define Euler's function $\phi(n)$ for every integer n > 1. Write down a formula for $\phi(pq)$, where p and q are distinct primes.

Find $\phi(91)$.

Determine the remainder when each of the following numbers is divided by 91:

(i)
$$15^{72}$$
; (ii) 15^{73} ; (iii) 15^{74} .
[9 marks]

9. State the axioms for a group.

In each of the following, determine which of the group axioms are satisfied. [You may assume that ordinary multiplication, and multiplication modulo n, are associative.]

- (a) The set of integers under subtraction;
- (b) the set of real numbers under multiplication;
- (c) the set $\{1, 7, 13, 19\}$ under multiplication modulo 30. [15 marks]

10. Let D(4) denote the group of symmetries of a square. The element *a* of D(4) is defined as the anticlockwise rotation through $\pi/2$ and *b* as reflection in one of the diagonals.

(i) Draw a picture of the square showing the effects of a and b.

[2 marks]

(ii) Express a and b as permutations of the vertices. [2 marks]

(iii) Express
$$ab$$
, ba and a^3 as permutations. Hence show that $ba \neq ab$ and $ba = a^3b$. [5 marks]

(iv) Let $H = \{e, a^2, ab, a^3b\}$. Show that H is a subgroup of D(4). [You may find it useful to construct a multiplication table for H.] [6 marks]

11. A group code has generator matrix

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}.$$

List the codewords and state how many errors are detected and how many are corrected by this code, giving reasons for your answers.

Write down the parity check matrix and a table of syndromes for this code for all possible single digit errors in transmission.

Using the following letter to number equivalents:

А	В	D	Ε	Ο	R	V	Υ
000	001	010	100	011	101	110	111

correct and read the received message:

101101 110111 100101 101010 110000 011110 011101 110011 111000.

[15 marks]