SECTION A

1. Prove by induction that, for every positive integer n,

$$
\sum_{r=1}^{n}(2 r-1)=n^{2}
$$

2. Find the greatest common divisor d of 1131 and 2418 , and find integers s and t such that

$$
d=1131 s+2418 t
$$

3. Find the inverse of 69 modulo 260.
4. In each of the following cases find the solutions (if any) of the given linear congruence:
(a) $6 x \equiv 14 \bmod 33 ;$
(b) $6 x \equiv 14 \bmod 34$;
(c) $6 x \equiv 14 \bmod 35$.
5. Let A be the set consisting of the two elements a and b, and B the set consisting of the three elements 0,1 and 2 . List the six injective maps $f: A \rightarrow B$.

Say why it is not possible for any map $f: A \rightarrow B$ to be surjective. [6 marks]
6. Let π, ρ be the permutations

$$
\pi=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 2 & 6 & 3 & 7 & 4 & 1
\end{array}\right), \rho=(1435)(267)
$$

Write π, ρ, ρ^{2} and $\pi \rho$ as products of disjoint cycles and determine their orders and signs.
[8 marks]
7. List the elements of the group G_{15} of invertible congruence classes modulo 15. Construct a multiplication table for this group.

Find the order of each element of the group.
[13 marks]

SECTION B

8. (a) Find the smallest positive integer x which satisfies the simultaneous congruences

$$
x \equiv 12 \bmod 23, \quad x \equiv 9 \bmod 16
$$

Find also the next smallest positive integer that satisfies both congruences.
[8 marks]
(b) State Fermat's Theorem.

Verify that 53 is a prime number.
Use Fermat's Theorem to prove the following two assertions:
(i) $4^{26} \equiv 1 \bmod 53$;
(ii) $4^{27}+7^{54}$ is divisible by 53 .
9. State the axioms for a group.

In each of the following, determine which of the group axioms are satisfied. [You may assume that ordinary multiplication, and multiplication modulo n, are associative.]
(a) The set of odd integers under multiplication;
(b) the set of non-zero real numbers under multiplication;
(c) the set of non-zero congruence classes modulo 8 under multiplication modulo 8 .
[15 marks]
10.(a) Say what it means for a group G to be cyclic.

Determine whether or not the group G_{18} of invertible congruence classes modulo 18 is cyclic.
[5 marks]
(b) Say what it means for a subset H of a group G to be a subgroup of G.

Now let $G=S(4)$, the group of permutations of $\{1,2,3,4\}$, and let $H=$ $\{e,(1234),(13)(24),(1432)\}$. By constructing a multiplication table for H, or otherwise, show that H is a subgroup of G.

Find the order of each element of H.
[10 marks]
11. A group code has generator matrix

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right) .
$$

List the codewords and state how many errors are detected and how many are corrected by this code, giving reasons for your answers.

Write down the parity check matrix and a table of syndromes for this code for all possible single digit errors in transmission.

Using the following letter to number equivalents:

A	D	E	F	I	L	M	P
000	001	010	100	011	101	110	111

correct and read the received message:

001000	110011	110000	101111	011101	110101	011001
110110	001011.					

[15 marks]

