SECTION A

1. Prove by induction that, for every positive integer n,

1.2 + 2.3 ... +
$$n(n + 1) = \frac{1}{3}n(n + 1)(n + 2)$$
.

[6 marks]

2. Find the greatest common divisor d of 1025 and 2542, and find integers s and t such that

$$d = 1025s + 2542t$$
.

[6 marks]

3. Find the inverse of 60 modulo 257.

[6 marks]

- **4.** In each of the following cases find the solutions (if any) of the given linear congruence:
 - (a) $8x \equiv 4 \mod 38$;
 - (b) $8x \equiv 4 \mod 39$;
 - (c) $8x \equiv 4 \mod 40$.

[10 marks]

5. Let X be the set consisting of the three elements 1, 2 and 3, and Y the set consisting of the two elements a and b. List the eight maps $f: X \to Y$ and say which (if any) of these are injective and which (if any) are surjective.

[7 marks]

6. Let π , ρ be the permutations

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 3 & 2 & 6 & 5 & 7 \end{pmatrix}, \ \rho = (3762)(3421).$$

Write π , ρ , $\pi\rho$ and ρ^2 as products of disjoint cycles and determine their orders and signs. [8 marks]

7. List the elements of the group G_{24} of invertible congruence classes modulo 24. Construct a multiplication table for this group.

Find the orders of all elements of the group.

[12 marks]

SECTION B

8. (a) Solve the simultaneous congruences

$$x \equiv 9 \mod 25$$
, $x \equiv 14 \mod 24$,

expressing your answer in the form $x \equiv a \mod n$ for suitable n and a. [6 marks]

(b) State Fermat's Theorem.

Verify that 211 is a prime number. Determine the remainder when each of the following numbers is divided by 211:

(i)
$$11^{210}$$
, (ii) 11^{212} and (iii) 11^{214} .

[9 marks]

9. (a) State the axioms for a group.

- [3 marks]
- (b) Let $G = \{2, 4, 6, 8\}$. Write down a multiplication table for G for the operation of multiplication modulo 10. Show that G is a group under this operation. [You may assume that multiplication modulo 10 is associative.]

[6 marks]

(c) Let $G = \{x \in \mathbf{R} : x \neq -1\}$. An operator * is defined on G by

$$x * y = xy + x + y.$$

Show that G is a group under the operation *. [You may assume that multiplication of real numbers is associative.] [6 marks]

- **10.**(a) Let D(5) denote the group of symmetries of a regular pentagon. The element a of D(5) is defined as the anticlockwise rotation through $2\pi/5$ and b as reflection in one of the lines joining a vertex to the mid-point of the opposite side. Show that $ab = ba^{-1}$ and that $a^2b = ba^3$. [7 marks]
 - (b) Say what it means for a subset H of a group G to be a subgroup of G.

Now let $G = G_{20}$, the group of invertible congruence classes modulo 20, and let $H = \{[1]_{20}, [9]_{20}, [11]_{20}, [19]_{20}\}$. By constructing a multiplication table for H, or otherwise, show that H is a subgroup of G. Find also a subgroup K of G with four elements, containing the element $[3]_{20}$.

11. A group code has generator matrix

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{pmatrix}.$$

List the codewords and state how many errors are detected and how many are corrected by this code, giving reasons for your answers.

Write down the parity check matrix and a table of syndromes for this code for all possible single digit errors in transmission.

Using the following letter to number equivalents:

correct and read the received message:

 $001011 \ \ 001101 \ \ 110001 \ \ 011101 \ \ 010111 \ \ 011110 \ \ 100110 \ \ 101101.$

[15 marks]