THE UNIVERSITY
of LIVERPOOL

## SOLUTIONS FOR MATH142 (MAY 2007)

(All questions are similar to exercises.)
Section A

1. Base Step. We have

$$
\sum_{k=1}^{1} \frac{k}{2^{k-1}}=1 / 1=1=4-\frac{1+2}{1}
$$

so the claim is true for $n=1$.
Induction Step. Suppose that the claim is true for $n \geq 1$. Then

$$
\begin{aligned}
\sum_{k=1}^{n+1} \frac{k}{2^{k-1}} & =\sum_{k=1}^{n} \frac{k}{2^{k-1}}+\frac{n+1}{2^{n}}=4-\frac{n+2}{2^{n-1}}+\frac{n+1}{2^{n}} \\
& =4-\frac{2 n+2-(n-1)}{2^{n}}=4-\frac{n+3}{2^{n}} .
\end{aligned}
$$

So the claim is true for $n+1$, as desired.
[4 marks]
Conclusion. By the principle of mathematical induction, the claim is true for all positive integers $n$.
[1 mark]
[Total: 6 marks]
2. By applying the Euclidean Algorithm (using the "matrix method"), we see that $\operatorname{gcd}(3961,2091)=17$,
[4 marks]
and that

$$
17=-19 \cdot 3961+36 \cdot 2091
$$

[Total: 6 marks]
3. By applying the Euclidean Algorithm (using the "matrix method"), we see that

$$
1=-6 \cdot 507+17 \cdot 179 .
$$

So 17 is the inverse of 179 modulo 507 .
4.
(a) We have $\operatorname{gcd}(25,30)=5$. Since this divides 10 , the congruence has solutions. Dividing through by the gcd, the equation becomes $5 x \equiv 2(\bmod 6)(2$ marks $)$. By inspection, or by using the Euclidean algorithm, the inverse of 5 modulo 6 is 5 (1 mark). So $x \equiv 2 \cdot 5 \equiv 4(\bmod 6)$. The five solutions modulo 30 are therefore $4,10,16,22,28$. (1 mark.)
[4 marks]
(b) We have $\operatorname{gcd}(25,30)=5$, which does not divide 11. So the congruence has no solution.
[2 marks]
(c) We have $\operatorname{gcd}(11,30)=1$, so there is exactly one solution. By inspection, or by using the Euclidean algorithm, the inverse of 11 modulo 30 is 11 . So the solution is $x \equiv 25 \cdot 11 \equiv 5(\bmod 30)$.
[Total: 10 marks]
5. The diagrams are obtained in the standard way: list the elements of the domain to the left, the elements of the range to the right, and draw arrows from $x$ to $f(x)$.
The maps in (a) and (c) are injective. Only the map in (a) is surjective. (Two marks for each diagram, plus three marks for the correct statements on injectivity/surjectivity.)
[Total: 9 marks]
6.

$$
\begin{aligned}
\pi & =(153)(2674) ; \\
\varrho & =(154237) ; \\
\pi^{2} & =(135)(27)(64) ; \\
\varrho \pi & =(1435726) .
\end{aligned}
$$

The orders of the permutations are $12,6,6$ and 7 , while their signs are $-1,-1,1$ and 1 , respectively. (Four marks for the correct cycle representations, two marks for correct orders, and two marks for correct signs.)
[Total: 8 marks]
7. $G_{18}=\{1,5,7,11,13,17\}$.

| $*$ | 1 | 5 | 7 | 11 | 13 | 17 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 5 | 7 | 11 | 13 | 17 |
| 5 | 5 | 7 | 17 | 1 | 11 | 13 |
| 7 | 7 | 17 | 13 | 5 | 1 | 11 |
| 11 | 11 | 1 | 5 | 13 | 17 | 7 |
| 13 | 13 | 11 | 1 | 17 | 7 | 5 |
| 17 | 17 | 13 | 11 | 7 | 5 | 1. |

Elements of order 3 are 7 and 13.

## Section B

8. 

(a) Write $x=5+17 k$; we need to solve $x \equiv 9(\bmod 13)$. That is,

$$
4 k \equiv 4 \quad(\bmod 13)
$$

or $k \equiv 1(\bmod 13)$.
[4 marks]
So $x=5+17(1+13 \ell)=22+221 \ell$, or $x \equiv 22 \quad(\bmod 221)$.
[2 marks]
(b) $\varphi(n)$ is defined to be the number of invertible congruence classes modulo $n$ (or: the number of integers $1, \ldots, n-1$ coprime to $n$ ).

We have $\varphi(p q)=(p-1)(q-1)$ when $p$ and $q$ are coprime primes.
So $\varphi(161)=\varphi(7 \cdot 23)=6 * 22=132$.
(i) Since 10 is coprime to 161 , Euler's theorem gives $10^{132} \equiv 1$, and hence $10^{133} \equiv$ 10.
(ii) Similarly, $10^{265}=10^{132} \cdot 10^{132} \cdot 10 \equiv 10$.
(iii) We have $10^{134} \equiv 100$ and $2^{138} \equiv 2^{6}=64$, so $10^{134}+2^{6} \equiv 164 \equiv 3$.
[3 marks]
[Total: 15 marks]
9. The axioms for a group $G$ with operation * are
(G1) $a * b \in G$ for all $a, b, \in G$.
(G2) $(a * b) * c=a *(b * c)$ for all $a, b, c \in G$.
(G3) There is $e \in G$ such that, for all $a \in G, a * e=e * a=a$.
(G4) For all $a \in G$, there is an element $a^{-1} \in G$ such that $a * a^{-1}=a^{-1} * a=e$.
[3 marks]
(a) (G1), (G2) and (G3) are satisfied, but (G4) is violated (e.g. 1 has no inverse).
[4 marks]
(b) All four group axioms are satisfied.
[4 marks]
(c) (G1) is not satisfied, since e.g. $2 \cdot 4=0$. (G2) and (G3) are satisfied, but (G4) is not satisfied (e.g. 2 has no inverse).
[4 marks]
[Total: 15 marks]
10.
(a) A group $G$ is cyclic if there is an element $a \in G$ such that $G=\left\{a^{n}: n \in \mathbb{Z}\right\}$.
[1 mark]
We have $G_{14}=\{1,3,5,9,11,13\}$.
[1 mark]
$3^{1}=3,3^{2}=9,3^{3}=13,3^{4}=11,3^{5}=5,3^{6}=1$. All elements of $G_{14}$ are included, so $G$ is cyclic.
[3 marks]
(b) $H$ is a subgroup of $G$ if it is a group under the operation of $G$. (Alternatively: if $e \in H, a * b \in H$ for all $a, b \in H$, and $a^{-1} \in H$ for all $a \in H$.)
[2 marks]

| $*$ | 1 | 9 | 11 |
| ---: | ---: | ---: | ---: |
| 1 | 1 | 9 | 11 |
| 9 | 9 | 11 | 1 |
| 11 | 11 | 1 | 9 | Since $1 \in H$, all entries in the table are in $H$, and every column

contains an entry 1 (i.e., all inverses are in $H$ ), we see that $H$ is a subgroup.
[5 marks]
(c) A subgroup of order two of $G_{14}$ is given by $\{1,13\}$.
11. The code words are:

0000000, 1001011, 0100110, 0011100,
1101101, 1010111, 0111010, 1110001.
The minimum weight of a non-zero codeword is 3 . So two errors are detected, and one error is corrected.
[2 marks]
The parity check matrix is

$$
H=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The syndromes and coset leaders are as follows:

| Syndromes | Coset leaders |
| :--- | :--- |
| 1011 | 1000000 |
| 0110 | 0100000 |
| 1100 | 0010000 |
| 1000 | 0001000 |
| 0100 | 0000100 |
| 0010 | 0000010 |
| 0001 | 0000001 |

We now decipher the given message:

| Received message | Syndrome <br> $w H$ | Coset leader <br> $h$ | Corrected message <br> $w+h$ | result | letter |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0100110 | 0000 | $($ n.a. $)$ | 0100110 | 010 | G |
| 1001101 | 0110 | 0100000 | 1101101 | 110 | O |
| 1101001 | 0100 | 0000100 | 1101101 | 110 | O |
| 0011100 | 0000 | $($ n.a. $)$ | 0011100 | 001 | D |
| 1001111 | 0100 | 0000100 | 1001011 | 100 | L |
| 1100001 | 1100 | 0010000 | 1110001 | 111 | U |
| 0010000 | 1100 | 0010000 | 0000000 | 000 | C |
| 0111010 | 0000 | (n.a.) | 0111010 | 011 | K |

