THE UNIVERSITY of LIVERPOOL

SECTION A

1. Prove by induction that, for every positive integer n,

$$
\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

2. Find the greatest common divisor d of 2323 and 1656, and find integers s and t such that

$$
d=2323 s+1656 t
$$

[6 marks]
3. Find the inverse of 83 modulo 614.
4. In each of the following cases find the solutions (if any) of the given linear congruence:
(a) $9 x \equiv 15 \bmod 42$;
(b) $10 x \equiv 15 \bmod 42$;
(c) $11 x \equiv 15 \bmod 42$.
5. Draw diagrams of each of the following maps and say which (if any) of these are surjective and which (if any) are injective.
(a) $f: \mathbf{Z}_{6} \rightarrow \mathbf{Z}_{6}$ given by $f(x)=3 x$;
(b) $f: \mathbf{Z}_{6} \rightarrow \mathbf{Z}_{6}$ given by $f(x)=5 x$;
(c) $f: \mathbf{Z}_{6} \rightarrow \mathbf{Z}_{3}$ given by $f(x)=[x]_{3}$. [Here $[x]_{3}$ denotes the congruence class of x modulo 3.]
6. Let π, ρ be the permutations

$$
\pi=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 2 & 5 & 4 & 7 & 1 & 6 & 3
\end{array}\right), \rho=(2714)(7326)
$$

Write π, ρ, π^{2} and $\pi \rho$ as products of disjoint cycles and determine their orders and signs.
7. Construct a multiplication table for the group G_{24} of invertible congruence classes modulo 24.

List the elements of order 2 in this group.

THE UNIVERSITY of LIVERPOOL

SECTION B

8. (a) Solve the simultaneous congruences

$$
x \equiv 3 \bmod 25, \quad x \equiv 11 \bmod 27,
$$

expressing your answer in the form $x \equiv a \bmod n$ for suitable a and n. [6 marks]
(b) Define Euler's function $\varphi(n)$ for every integer $n>1$. State a formula for $\varphi(p q)$, where p and q are distinct primes.

Find $\varphi(185)$.
Determine the remainder when each of the following numbers is divided by 185.

$$
\text { (i) } 14^{144} ; \quad \text { (ii) } 14^{146} ; \quad \text { (iii) } 14^{147}+31^{145}
$$

9. State the axioms for a group.

In each of the following, determine which of the group axioms are satisfied. [You may assume that ordinary multiplication, and multiplication modulo n, are associative.]
(a) The set of odd integers under multiplication;
(b) the set of non-zero congruence classes modulo 6 under multiplication modulo 6;
(c) the set of non-zero congruence classes modulo 7 under multiplication modulo 7 .
[15 marks]
10. Say what it means for a subset H of a group G to be a subgroup of G.

Let $D(4)$ denote the group of symmetries of a square. The element a of $D(4)$ is defined as the anticlockwise rotation through $\pi / 2$ and b as reflection in one of the diagonals.
(i) Describe geometrically by means of diagrams the elements $a^{2}, a b$ and $a^{2} b$ of $D(4)$.
(ii) Prove that

$$
a^{4}=e, \quad b^{2}=e, \quad b a^{3}=a b
$$

(iii) Let $H=\left\{e, a^{2}, b, a^{2} b\right\}$. By constructing a multiplication table for H, or otherwise, show that H is a subgroup of $D(4)$.

Determine whether or not H is a cyclic subgroup of $D(4)$.
[15 marks]

THE UNIVERSITY of LIVERPOOL

11. A group code has generator matrix

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

List the codewords and state how many errors are detected and how many are corrected by this code, giving reasons for your answers.

Write down the parity check matrix and a table of syndromes for this code for all possible single digit errors in transmission.

Using the following letter to number equivalents:

A	B	G	N	O	R	S	W
000	001	010	100	011	101	110	111

correct and read the received message:
$11001011101000 \quad 0010000 \quad 1001111 \quad 1110101 \quad 0110011 \quad 1001011$
1101110.
[15 marks]

