THE UNIVERSITY of LIVERPOOL

SECTION A

1. Prove by induction that, for every positive integer n,

$$
n^{5}-6 n \text { is divisible by } 5 .
$$

[6 marks]
2. Find the greatest common divisor d of 2829 and 2296 , and find integers s and t such that

$$
d=2829 s+2296 t
$$

[6 marks]
3. In each of the following cases find the solutions (if any) of the given linear congruence:
(a) $6 x \equiv 21 \bmod 43 ;$
(b) $6 x \equiv 21 \bmod 44$;
(c) $6 x \equiv 21 \bmod 45$.
[10 marks]
4. Define Euler's function $\phi(n)$ for every integer $n>1$.

Find $\phi(33)$ and use Euler's Theorem to show that $2^{43}+5^{42}$ is divisible by 33.
[6 marks]
5. Let A denote the set consisting of the three elements 1,2 and 3 , and B the set consisting of the two elements a and b. List all the maps $f: A \rightarrow B$ and say which (if any) of these are surjective and which (if any) are injective.
[8 marks]
6. Let π, ρ be the permutations

$$
\pi=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 8 & 6 & 7 & 5 & 4 & 1 & 2
\end{array}\right), \rho=(3427)(1526)
$$

Write π, ρ, π^{2} and $\pi \rho$ as products of disjoint cycles and determine their orders and signs.
[8 marks]
7. Construct a multiplication table for the group $S(3)$ of permutations of $\{1,2,3\}$.

Find elements π, ρ of $S(3)$ such that $\pi \rho \neq \rho \pi$.
Write down the inverse of each element of $S(3)$.
[11 marks]

THE UNIVERSITY of LIVERPOOL

SECTION B

8. (a) Find the inverse of 85 modulo 494.
(b) Find the smallest positive integer n which satisties the simultaneous congruences

$$
x \equiv 2 \bmod 16, \quad x \equiv 3 \bmod 19, \quad x \equiv 7 \bmod 25
$$

Find also the next smallest integer satisfying these congruences. [9 marks]
9. State the axioms for a group.

In each of the following, determine which of the group axioms are satisfied. [You may assume that ordinary multiplication, and multiplication modulo n, are associative.]
(a) The set of positive integers under multiplication;
(b) the set of integers under subtraction;
(c) the set $\{2,4,6,8\}$ under multiplication modulo 10 .
[15 marks]
10.(a) Say what it means for a group G to be cyclic.

Determine whether or not the group G_{9} of invertible congruence classes modulo 9 is cyclic.
[5 marks]
(b) Say what it means for a subset H of a group G to be a subgroup of G.

Let $D(4)$ denote the group of symmetries of a square. The element a of $D(4)$ is defined as the anticlockwise rotation through $\pi / 2$ and b as reflection in a line joining the mid-points of a pair of opposite sides.

Now let $H=\left\{e, a^{2}, a b, a^{3} b\right\}$. By constructing a multiplication table for H, or otherwise, show that H is a subgroup of $D(4)$.

Determine whether or not H is a cyclic subgroup of $D(4)$.

THE UNIVERSITY of LIVERPOOL

11. A group code has generator matrix

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

List the codewords and state how many errors are detected and how many are corrected by this code, giving reasons for your answers.

Write down the parity check matrix and a table of syndromes for this code for all possible single digit errors in transmission.

Using the following letter to number equivalents:

A	E	N	P	G	W	T	S
000	001	010	100	011	101	110	111

correct and read the received message:

$$
\begin{array}{lllllll}
010110 & 011011 & 101100 & 110000 & 100000 & 010101 & 001011
\end{array}
$$

$$
000110110111 .
$$

