SECTION A

1. Prove by induction that, for every positive integer n,

$$
1^{3}+2^{3}+\ldots+n^{3}=\frac{1}{4} n^{2}(n+1)^{2} .
$$

2. Find the greatest common divisor d of 1092 and 1430, and find integers s and t such that

$$
d=1092 s+1430 t
$$

[6 marks]
3. In each of the following cases find the solutions (if any) of the given linear congruence:
(a) $7 x \equiv 13 \bmod 24 ;$
(b) $8 x \equiv 14 \bmod 24$;
(c) $9 x \equiv 15 \bmod 24$.
[10 marks]
4. Verify that 193 is a prime number.

Using Fermat's Theorem, or otherwise, show that

$$
7^{194}+12^{194} \text { is divisible by } 193
$$

[6 marks]
5. Draw diagrams of each of the following maps and say which (if any) of them are injective, and which (if any) are surjective.
(a) $f: \mathbf{Z}_{5} \rightarrow \mathbf{Z}_{5}$ given by $f(x)=4 x$;
(b) $f: \mathbf{Z}_{10} \rightarrow \mathbf{Z}_{10}$ given by $f(x)=4 x$;
(c) $f: \mathbf{Z}_{10} \rightarrow \mathbf{Z}_{5}$ given by $f(x)=4 x$.
[8 marks]
6. Let π, ρ be the permutations

$$
\pi=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 8 & 4 & 1 & 2 & 7 & 6 & 5
\end{array}\right), \rho=(127463)(1856)
$$

Write π, ρ, ρ^{2} and $\pi \rho$ as products of disjoint cycles and determine their orders and signs.
[8 marks]
7. List the elements of the group G_{20} of invertible congruence classes modulo 20. Construct a multiplication table for this group.

Find the order of each element of the group.

SECTION B

8. (a) Find the inverse of $51 \bmod 529$.
(b) Find the smallest positive integer x which is congruent to $5 \bmod 22$, is divisible by 7 and leaves remainder 11 when divided by 25 .

Find also the next smallest positive integer with these properties. [9 marks]
9. State the axioms for a group.

In each of the following, determine which of the group axioms are satisfied. [You may assume that ordinary addition and multiplication, and multiplication modulo n, are associative.]
(a) The set of even integers under addition;
(b) the set of non-zero real numbers under division;
(c) the set $\{1,7,11,13\}$ under multiplication modulo 30 . [15 marks]
10. Say what it means for a subset H of a group G to be a subgroup of G. Say also what it means for H to be a cyclic subgroup.

Let $S(4)$ denote the group of permutations of $\{1,2,3,4\}$. Subsets H and K of $S(4)$ are defined by

$$
H=\{e,(1234),(13)(24),(1432)\}
$$

and

$$
K=\{e,(12)(34),(13)(24),(14)(23)\} .
$$

By constructing multiplication tables for H and K, or otherwise, show that H and K are both subgroups of $S(4)$.

For each of H and K, determine whether or not it is a cyclic subgroup of $S(4)$.
[15 marks]
11. A group code has generator matrix

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

List the codewords and state how many errors are detected and how many are corrected by this code, giving reasons for your answers.

Write down the parity check matrix and a table of syndromes for this code for all possible single digit errors in transmission.

Using the following letter to number equivalents:

A	D	E	P	R	S	T	U
000	001	010	100	011	101	110	111

correct and read the received message:

| 1011101 | 0110100 | 1001110 | 0111101 | 0111010 | 1011011 | 1000011 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0100000 | 0111010. | | | | | |

[15 marks]

