SECTION A

1. Prove by induction that, for every positive integer n,

$$1^{3} + 2^{3} + \ldots + n^{3} = \frac{1}{4}n^{2}(n+1)^{2}.$$

[6 marks]

2. Find the greatest common divisor d of 1092 and 1430, and find integers s and t such that

$$d = 1092s + 1430t.$$

[6 marks]

3. In each of the following cases find the solutions (if any) of the given linear congruence:

(a)
$$7x \equiv 13 \mod 24;$$

(b) $8x \equiv 14 \mod 24;$
(c) $9x \equiv 15 \mod 24.$ [10 marks]

4. Verify that 193 is a prime number.

Using Fermat's Theorem, or otherwise, show that

$$7^{194} + 12^{194}$$
 is divisible by 193.

[6 marks]

5. Draw diagrams of each of the following maps and say which (if any) of them are injective, and which (if any) are surjective.

- (a) $f : \mathbf{Z}_5 \to \mathbf{Z}_5$ given by f(x) = 4x; (b) $f : \mathbf{Z}_{10} \to \mathbf{Z}_{10}$ given by f(x) = 4x; (c) $f : \mathbf{Z}_{10} \to \mathbf{Z}_5$ given by f(x) = 4x. [8 marks]
- **6.** Let π , ρ be the permutations

 $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 4 & 1 & 2 & 7 & 6 & 5 \end{pmatrix}, \ \rho = (127463)(1856).$

Write π , ρ , ρ^2 and $\pi\rho$ as products of disjoint cycles and determine their orders and signs. [8 marks]

7. List the elements of the group G_{20} of invertible congruence classes modulo 20. Construct a multiplication table for this group.

Find the order of each element of the group. [11 marks]

CONTINUED

SECTION B

8. (a) Find the inverse of 51 mod 529. [6 marks]

(b) Find the smallest positive integer x which is congruent to 5 mod 22, is divisible by 7 and leaves remainder 11 when divided by 25.

Find also the next smallest positive integer with these properties. [9 marks]

9. State the axioms for a group.

In each of the following, determine which of the group axioms are satisfied. [You may assume that ordinary addition and multiplication, and multiplication modulo n, are associative.]

- (a) The set of even integers under addition;
- (b) the set of non-zero real numbers under division;
- (c) the set $\{1, 7, 11, 13\}$ under multiplication modulo 30. [15 marks]

10. Say what it means for a subset H of a group G to be a *subgroup* of G. Say also what it means for H to be a *cyclic subgroup*.

Let S(4) denote the group of permutations of $\{1, 2, 3, 4\}$. Subsets H and K of S(4) are defined by

$$H = \{e, (1234), (13)(24), (1432)\}\$$

and

$$K = \{e, (12)(34), (13)(24), (14)(23)\}.$$

By constructing multiplication tables for H and K, or otherwise, show that H and K are both subgroups of S(4).

For each of H and K, determine whether or not it is a cyclic subgroup of S(4). [15 marks]

11. A group code has generator matrix

(1)	0	0	1	1	1	$0 \rangle$	
0	1	0	1	1	0	1	
$\int 0$	0	1	0	1	1	1/	

List the codewords and state how many errors are detected and how many are corrected by this code, giving reasons for your answers.

Write down the parity check matrix and a table of syndromes for this code for all possible single digit errors in transmission.

Using the following letter to number equivalents:

А	D	Ε	Р	R	\mathbf{S}	Т	U
000	001	010	100	011	101	110	111

correct and read the received message:

10111010110100100111001110101011011100001101000000111010.

[15 marks]