SECTION A

1. Prove by induction that, for every positive integer n,

$$3^{2n} - 1$$
 is divisible by 8.

[6 marks]

2. Find the greatest common divisor d of 3774 and 1184, and find integers s and t such that

$$d = 3774s + 1184t.$$

[6 marks]

3. Find the inverse of 77 modulo 263. [6 marks]

4. In each of the following cases find the solutions (if any) of the given linear congruence:

(a)
$$4x \equiv 10 \mod 34;$$

(b) $4x \equiv 10 \mod 35;$
(c) $4x \equiv 10 \mod 36.$ [10 marks]

5. Draw diagrams of each of the following maps and say which (if any) of them are injective, and which (if any) are surjective.

(a) $f: \mathbf{Z}_2 \to \mathbf{Z}_2$ given by $f(x) = x^2$; (b) $f: \mathbf{Z}_4 \to \mathbf{Z}_4$ given by $f(x) = x^2$; (c) $f: \mathbf{Z}_4 \to \mathbf{Z}_2$ given by $f(x) = [x^2]_2$.

[In (c), $[x^2]_2$ means the remainder when x^2 is divided by 2.]

[8 marks]

6. Let π , ρ be the permutations

 $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 2 & 7 & 8 & 4 & 6 & 5 \end{pmatrix}, \ \rho = (3516)(427).$

Write π , ρ , π^2 and $\pi\rho$ as products of disjoint cycles and determine their orders and signs. [8 marks]

7. List the elements of the group G_9 of invertible congruence classes modulo 9. Construct a multiplication table for this group.

Find the order of each element of the group. [11 marks]

CONTINUED

SECTION B

8. (a) Solve the simultaneous congruences

$$x \equiv 19 \mod 28, x \equiv 1 \mod 11,$$

expressing your answer in the form $x \equiv a \mod n$ for suitable a and n.

[6 marks]

(b) Define Euler's function $\phi(n)$ for every integer n > 1. Write down a formula for $\phi(pq)$, where p and q are distinct primes.

Find $\phi(111)$.

Determine the remainder when each of the following numbers is divided by 111:

(i)
$$13^{72}$$
; (ii) 13^{74} ; (iii) $13^{74} + 53^{73}$.

[9 marks]

9. State the axioms for a group.

In each of the following, determine which of the group axioms are satisfied. [You may assume that ordinary addition and multiplication, and multiplication modulo n, are associative.]

- (a) The set of odd integers under addition;
- (b) the set of integers under multiplication;
- (c) the set $\{1, 2, 4, 8\}$ under multiplication modulo 15. [15 marks]

10. Say what it means for a subset H of a group G to be a *subgroup* of G. Say also what it means for H to be a *cyclic subgroup*.

Let D(4) denote the group of symmetries of a square. The element a of D(4) is defined as the anticlockwise rotation through $\pi/2$ and b as reflection in a line joining the mid-points of a pair of opposite sides. Show that

$$a^4 = e; \quad b^2 = e; \quad ab = ba^3.$$

Now let $H = \{e, a^2, ab, a^3b\}$. By constructing a multiplication table for H, or otherwise, show that H is a subgroup of D(4).

Determine whether or not H is a cyclic subgroup of D(4). [15 marks]

11. A group code has generator matrix

(1)	0	0	1	0	1	1	
0	1	0	1	1	0	1	
$\int 0$	0	1	1	1	1	0/	

List the codewords and state how many errors are detected and how many are corrected by this code, giving reasons for your answers.

Write down the parity check matrix and a table of syndromes for this code for all possible single digit errors in transmission.

Using the following letter to number equivalents:

С	\mathbf{E}	G	Ι	Κ	\mathbf{L}	Ν	Х
000	001	010	100	011	101	110	111

correct and read the received message:

[15 marks]