SECTION A

1. Prove by induction that, for every positive integer n,

$$
3^{2 n}-1 \text { is divisible by } 8
$$

2. Find the greatest common divisor d of 3774 and 1184, and find integers s and t such that

$$
d=3774 s+1184 t
$$

[6 marks]
3. Find the inverse of 77 modulo 263.
4. In each of the following cases find the solutions (if any) of the given linear congruence:
(a) $4 x \equiv 10 \bmod 34 ;$
(b) $4 x \equiv 10 \bmod 35$;
(c) $4 x \equiv 10 \bmod 36$.
[10 marks]
5. Draw diagrams of each of the following maps and say which (if any) of them are injective, and which (if any) are surjective.
(a) $f: \mathbf{Z}_{2} \rightarrow \mathbf{Z}_{2}$ given by $f(x)=x^{2}$;
(b) $f: \mathbf{Z}_{4} \rightarrow \mathbf{Z}_{4}$ given by $f(x)=x^{2}$;
(c) $f: \mathbf{Z}_{4} \rightarrow \mathbf{Z}_{2}$ given by $f(x)=\left[x^{2}\right]_{2}$.
[$\operatorname{In}(\mathrm{c}),\left[x^{2}\right]_{2}$ means the remainder when x^{2} is divided by 2.]
6. Let π, ρ be the permutations

$$
\pi=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 1 & 2 & 7 & 8 & 4 & 6 & 5
\end{array}\right), \rho=(3516)(427)
$$

Write π, ρ, π^{2} and $\pi \rho$ as products of disjoint cycles and determine their orders and signs.
7. List the elements of the group G_{9} of invertible congruence classes modulo 9. Construct a multiplication table for this group.

Find the order of each element of the group.

SECTION B

8. (a) Solve the simultaneous congruences

$$
x \equiv 19 \bmod 28, \quad x \equiv 1 \bmod 11,
$$

expressing your answer in the form $x \equiv a \bmod n$ for suitable a and n.
[6 marks]
(b) Define Euler's function $\phi(n)$ for every integer $n>1$. Write down a formula for $\phi(p q)$, where p and q are distinct primes.

Find $\phi(111)$.
Determine the remainder when each of the following numbers is divided by 111:

$$
\text { (i) } 13^{72} ; \quad \text { (ii) } 13^{74} ; \quad \text { (iii) } 13^{74}+53^{73} \text {. }
$$

[9 marks]
9. State the axioms for a group.

In each of the following, determine which of the group axioms are satisfied. [You may assume that ordinary addition and multiplication, and multiplication modulo n, are associative.]
(a) The set of odd integers under addition;
(b) the set of integers under multiplication;
(c) the set $\{1,2,4,8\}$ under multiplication modulo 15 .
10. Say what it means for a subset H of a group G to be a subgroup of G. Say also what it means for H to be a cyclic subgroup.

Let $D(4)$ denote the group of symmetries of a square. The element a of $D(4)$ is defined as the anticlockwise rotation through $\pi / 2$ and b as reflection in a line joining the mid-points of a pair of opposite sides. Show that

$$
a^{4}=e ; \quad b^{2}=e ; \quad a b=b a^{3} .
$$

Now let $H=\left\{e, a^{2}, a b, a^{3} b\right\}$. By constructing a multiplication table for H, or otherwise, show that H is a subgroup of $D(4)$.

Determine whether or not H is a cyclic subgroup of $D(4)$.
11. A group code has generator matrix

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

List the codewords and state how many errors are detected and how many are corrected by this code, giving reasons for your answers.

Write down the parity check matrix and a table of syndromes for this code for all possible single digit errors in transmission.

Using the following letter to number equivalents:

C	E	G	I	K	L	N	X
000	001	010	100	011	101	110	111

correct and read the received message:

0011110	1101000	0000100	1011110	1010101	1110101	1011011
1100110	0111101.					

[15 marks]

