SECTION A

1. Prove by induction that, for every positive integer n,

$$n^5 - n$$
 is divisible by 10.

[6 marks]

2. Find the greatest common divisor d of 6391 and 5159, and find integers s and t such that

$$d = 6391s + 5159t$$
.

[6 marks]

- **3.** In each of the following cases find the solutions (if any) of the given linear congruence:
 - (a) $12x \equiv 6 \mod 21$;
 - (b) $13x \equiv 7 \mod 21$;
 - (c) $14x \equiv 8 \mod 21$.

[10 marks]

4. Define Euler's function $\phi(n)$ for every integer n > 1.

Find $\phi(22)$ and use Euler's Theorem to show that

$$5^{11} + 17^{11}$$
 is divisible by 22.

[8 marks]

- 5. Draw diagrams of each of the following maps and say which (if any) of them are injective, and which (if any) are surjective.
 - (a) $f: \mathbf{Z}_7 \to \mathbf{Z}_7$ given by f(x) = 2x;
 - (b) $f: \mathbf{Z}_8 \to \mathbf{Z}_8$ given by f(x) = 2x;
 - (c) $f: \mathbf{Z}_3 \to \mathbf{Z}_6$ given by f(x) = 2x;

[9 marks]

6. Let π , ρ be the permutations

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 5 & 4 & 7 & 8 & 6 & 3 \end{pmatrix}, \ \rho = (341)(1538).$$

Write π , ρ , π^2 and $\pi\rho$ as products of disjoint cycles and determine their orders and signs. [8 marks]

7. Construct a multiplication table for the group S(3) of permutations of $\{1, 2, 3\}$.

Find the order of each element of this group.

[8 marks]

SECTION B

8. (a) Find the inverse of 159 modulo 527.

[6 marks]

(b) Find the smallest positive integer x which leaves remainder 6 when divided by 11, is divisible by 13 and is congruent to 5 modulo 14.

Find also the next smallest positive integer with these properties. [9 marks

9. State the axioms for a group.

In each of the following, determine which of the group axioms are satisfied. [You may assume that ordinary addition and multiplication are associative.]

- (a) The set of odd integers under multiplication;
- (b) the set of non-zero real numbers under division;
- (c) the set of real numbers under the operation * defined by

$$a * b = a + b + 1.$$

[15 marks]

10.(a) Let G be a group. Say what it means for G to be *cyclic*.

Find the order of each element of the group G_{20} . Hence determine whether or not this group is cyclic. [7 marks]

(b) Let D(4) denote the group of symmetries of a square. The element a of D(4) is defined as the anticlockwise rotation through $\pi/2$ and b as reflection in one of the diagonals. Show that

$$H = \{e, a^2, ab, a^3b\}$$

is a subgroup of D(4). [You may find it useful to construct a multiplication table for H.] [8 marks]

11. A group code has generator matrix

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{pmatrix}.$$

List the codewords and state how many errors are detected and how many are corrected by this code, giving reasons for your answers.

Write down the parity check matrix and a table of syndromes for this code for all possible single digit errors in transmission.

Using the following letter to number equivalents:

correct and read the received message:

[15 marks]