THE UNIVERSITY of LIVERPOOL

SUMMER 2004 EXAMINATIONS

Bachelor of Science : Year 1
Bachelor of Science: Year 2
Master of Mathematics: Year 1
Master of Mathematics: Year 2
Master of Physics : Year 1

DYNAMIC MODELLING

INSTRUCTIONS TO CANDIDATES

Candidates should answer the WHOLE of Section A and THREE questions from Section B. Section A carries 55\% of the available marks.
Take $g=9.81 \mathrm{~ms}^{-2}$. Give numerical answers to 3 significant figures.
You may use

$$
\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=v \frac{d v}{d x} .
$$

THE UNIVERSITY Of LIVERPOOL

SECTION A

1. Unmolested the concentration of a species of phytoplankton would grow at a rate of 5% per day, but grazing losses due to a predatory species of zooplankton impose a constraint, decreasing the concentration by a rate equivalent to 3% per day. Write down a differential equation for $C(t)$ the phytoplankton concentration at a time t, where the unit of t is one day. If the phytoplankton concentration at $t=0$ was C_{0}, how many days will it take for the concentration to treble?
2. A dead body has been discovered in a house, and the police, suspecting foul play, wish to determine the time of death. The temperature $\theta(t)$ of the body at time t, is assumed to decrease at a rate proportional to the difference between θ and the ambient room temperature T_{R}, with constant of proportionality k. When the body was first found, at $t=0$, its temperature was $30^{\circ} \mathrm{C}$ and 2 hours later this had fallen to $28^{\circ} \mathrm{C}$. Write down a differential equation for $\theta(t)$, and integrate it to show that

$$
k=\frac{1}{2} \ln \left[\frac{30-T_{R}}{28-T_{R}}\right] .
$$

If $T_{R}=20^{\circ} \mathrm{C}$ and assuming the body's temperature was the normal $37^{\circ} \mathrm{C}$ at the time of death, how long had it lain undiscovered?
3. A house buyer takes out a mortgage of $£ 80000$ to buy a new house. The building society lends him the money at an interest rate of 0.48% per month and the customer makes monthly repayments of $£ 500$ to pay off the loan. Write down the equation for u_{m+1}, the balance owed at the end of month $(m+1)$, in terms of u_{m}. If $x_{m}=u_{m}-N$, where N is the equilibrium solution of this equation, write down a second equation for x_{m} in terms of x_{0}. How long does it take the customer to pay off his mortgage and how much does he pay in total?

THE UNIVERSITY Of LIVERPOOL

4. If n the number of events that have occurred at time t, follows a Poisson process, then the probability $P(n, t)$ that n events have occurred by time t is given by

$$
P(n, t)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}
$$

where λ is a constant. At what time does $P(n, t)$ reach its maximum value? If a motor dealer sells, on average, 3 new cars per day, what (assuming the number of cars sold follows a Poisson process) is the probability that the dealer sells 20 new cars in a working week (6 days)?
5. A particle travels so that its velocity is given by

$$
\boldsymbol{v}=\sin (t) \boldsymbol{i}+\boldsymbol{j} t e^{-t^{2}}+\cos (t) \boldsymbol{k}
$$

Calculate at any time t, a) the particle's speed, b) its acceleration and c) its position, given that at $t=0$ it was situated at $(2,-3,1)$.
6. A ball of mass m, initially at rest, is dropped vertically from a tower 30 m high. As it falls the ball is subject to a resistive force equivalent to 0.1 mv N , where v is its velocity at time t. Write down Newton's equation of motion and show that

$$
v=10 g\left(1-e^{-0.1 t}\right)
$$

Integrate this expression exactly to find the distance travelled at time t. Assuming that $g=9.81 \mathrm{~ms}^{-2}$ show that the ball first hits the ground approximately 2.47 seconds after release. [Hint: $e^{x} \approx 1+x+x^{2} / 2!$, when $|x| \ll 1$.]
7. The equation for the displacement x of a forced harmonic oscillator is

$$
\ddot{x}+36 x=16 \sin (2 t) .
$$

At time $t=0, x=0$ and $\dot{x}=4$. Find x at time t. What is the next time $t>0$ when $x=0$ again?

THE UNIVERSITY Of LIVERPOOL

8. Let $x(t)$ and $y(t)$ represent the levels of two populations governed by the following coupled differential equations

$$
\frac{d x}{d t}=(15-y) \quad \frac{d y}{d t}=5(x-5)
$$

Initially $x=7$ and $y=11$. Obtain and solve the differential equation for y in terms of x. From your results draw a phase diagram for this situation, indicating which way around the curve the point (x, y) moves.
[5 marks]

SECTION B

9. Consider a two-state stochastic system, with states A and B. In the usual notation,

$$
\frac{d}{d t} P(A, t)=P(B, t) W(B \rightarrow A)-P(A, t) W(A \rightarrow B)
$$

Write down what each term in this equation represents.
A businessman commutes to work by train. If his train is late on a particular day, the probability that it is late the following day is 0.5 . However if his train is on time on a particular day the probability that it is on time the next day is 0.95 . If $P(O T, t)$ and $P(L, t)$ are the probabilities of the businessman being on time or late for work at time t, show that

$$
\frac{d P(O T, t)}{d t}+0.55 P(O T, t)=0.5
$$

Solve this equation if $P(O T, 0)=0.8$. The businessman cannot afford to be late more than 5% of the time. Is his probability of being late ever likely to fall below this figure, or should he seek alternative transport?
[10 marks]

THE UNIVERSITY Of LIVERPOOL

10. Let $x(t)$ be the population of lions in a game reserve at time t in years and $y(t)$ be the corresponding population of buffalo upon which they prey. Suppose these populations satisfy the differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=4(800-y) \\
& \frac{d y}{d t}=(x-200)
\end{aligned}
$$

The game warden carries out an initial survey in which he estimates the population of lions to be 248 and buffalo to be 768 . Obtain and solve the differential equation for y in terms of x. From your results draw a phase diagram for this situation, indicating which way around the curve the point (x, y) moves.
By using the above equations derive the second order equation

$$
\frac{d^{2} x}{d t^{2}}+4 x=800
$$

Solve this equation to find $x(t)$ and hence $y(t)$. Deduce that it takes about 15 months after the survey for the buffalo population to reach its maximum.
[7 marks]
11. A sheep farmer in the Australian outback maintains a large flock of sheep whose population $n(t)$, where t is the time in years, satisfies the differential equation

$$
\frac{d n}{d t}=8 n-\frac{n^{2}}{40} .
$$

Find the equilibrium values of the flock and determine their stability.
Integrate the above equation (use partial fractions) to find $n(t)$ assuming $n=200$ when $t=0$.
The farmer wishes to sell 150 of his sheep at the market each year. The proposed sale would alter the differential equation to

$$
\frac{d n}{d t}=8 n-\frac{n^{2}}{40}-150
$$

Find the equilibrium population values and their stability in this case. Decide, by means of a diagram, if the farmer can sell 150 animals at market and ensure the long-term size of his flock doesn't fall below 250 animals. (Again assume $n=200$ when $t=0$.)
[5 marks]

THE UNIVERSITY Of LIVERPOOL

12. A parachutist jumps from a plane and falls freely for 5 seconds before opening his parachute. The mass m of the parachutist, together with his clothes and equipment, is 75 kg . The drag due to air resistance is proportional to the square of his velocity v, the proportionality constant $k=0.3 \mathrm{kgm}^{-1}$ in free fall and $k=150 \mathrm{kgm}^{-1}$ with the parachute open.
Assuming the downward direction is positive, write down Newton's equation of motion linking $d v / d t$ and the forces acting on the parachutist. Integrate this equation (assuming $v=0$ when $t=0$) either using the substitution
$v=\sqrt{\frac{\mathrm{mg}}{\mathrm{k}}} \tanh \left(\sqrt{\frac{\mathrm{kg}}{\mathrm{m}}} \theta\right)$ or by partial fractions to find v in terms of t. Taking $v=d y / d t$, integrate your result to show that given $y=0$ when $t=0$,

$$
y=\frac{m}{k} \ln \left(\cosh \left(\sqrt{\frac{k g}{m}} t\right)\right) .
$$

[10 marks]
Find how far the parachutist falls before he opens his parachute. Find also the least possible value of his speed as he reaches the ground.
13. The lookout on a large ship travelling east at $25 \mathrm{~km} / \mathrm{h}$ observes a small (too small to appear on the ship's radar) speedboat some 800 m due north of his position. It appears to be travelling south-west, at a speed of $35 \mathrm{~km} / \mathrm{h}$.
By using vector methods, find the actual velocity and speed of the speedboat.

Find the position vector at time t of the speedboat with respect to the large ship.

The lookout fears the speedboat will be swamped by the ship's wake if it gets closer than 200 m . Does he need to radio to the ship's captain to order an emergency change of course?

