MATH104 Exam May 2007, Solutions

All questions except q. 1 are standard homework examples

1. tau, omega, θ, ρ. (1 mark each.)
2.

a) $f(n)=-18+10 n$.
b) $f(n)=4(n+1)$
c) $f(n)=n$ if n is even and $-n-1$ if n is odd.
(2 marks for a), 4 marks for b) and 6 marks for c).)
3.
a) $a \neq 1$ and $a<2 . \quad(2$ marks $)$
b) $x \leq y$ or $y \leq z \quad$ (3 marks)
c) There exist x and y with $f(x)<f(y)$ and $x \geq y \quad$ (3 marks)
d) For all $N \in \mathbb{N}$ there exists $x \in \mathbb{R}$ such that $f(x) \geq N$ or $g(x) \geq N$. (4 marks)
4.
a) f is not injective if there exist $x, y \in \mathbb{R}$ such that $f(x)=f(y)$ but $x \neq y$. (2 marks)
b) Let $x, y \in \mathbb{R}$ and suppose $f(x)=f(y)$. Then $10-3 x=10-3 y$ and rearranging gives $3 x=3 y$ so $x=y$. (3 marks)
c) Let $x=0, y=-1$. Then $f(x)=f(y)=0$ but $x \neq y$. Hence f is not injective. (4 marks)
d) Let $x, y \in \mathbb{R}, x \geq 0, y \geq 0$, Suppose that $f(x)=f(y)$. Then $x^{2}+x=y^{2}+y$, which gives $x^{2}-y^{2}+x-y=0$, that is $(x-y)(x+y)+(x-y)=0$, that is $(x-y)(x+y+1)=0$. But $x>0$ and $y>0$ so that the second factor cannot be 0 . Hence the first factor is 0 , giving $x=y$. (4 marks)
5.

For integers m and n the statement $m \mid n$ means that there exists an integer k with $n=k m$. (1 mark)
a) R is not an equivalence relation. Property (ii) fails, since for example $1 R 2$ is true but $2 R 1$ is false (since $2=1+1$). (3 marks)
b) R is an equivalence relation. For let x, y, and z be any integers. Then
i) $x-x=0$ and $10 \mid 0$ since $0=0 \times 10$, so $x R x$.
ii) If $x R y$ then $x-y=10 k$, for some $k \in \mathbb{Z}$ so $y-x=10(-k)$, and $-k \in \mathbb{Z}$ so $y R x$.
iii) If $x R y$ and $y R z$ then $x-y=10 k$ and $y-z=10 l$ for some integers k, l so $x-z=$ $(x-y)+(y-z)=10(k+l)$, i.e. $x R z$.
(4 marks)
c) R is not an equivalence relation. In this case only property (iii) fails. For example, $2 R 6$ since 2 divides 2 and 6 , and $6 R 9$ since 3 divides 6 and 9 , but $2 R 9$ is false since there is no prime dividing both 2 and 9 . (6 marks)
6.
a) Let m and n be integers and suppose that m and n are both odd. Then $m=2 k+1, n=2 l+1$ for some integers k, l. Hence $m n=(2 k+1)(2 l+1)=2(2 k l+k+l)+1$, which is of the form $2 k^{\prime}+1$ for an integer k^{\prime} and hence odd.
The converse states: Let $m, n \in \mathbb{Z}$. If $m n$ is odd then m and n are odd. This is true: Suppose that $m n$ is odd and that m or n is even, say m. Then $m=2 k$ for an integer k so that $m n=2 k n$ is even, giving a contradiction. [Or we could prove the contrapositive: if m is even or n is even, then $m n$ is even, in the same way.] (6 marks)
b) Suppose, for a contradiction, that m and n are integers and that $6 m+9 n=22$. Then $3(2 m+3 n)=22$ and it follows that $3 \mid 22$. But this is false since $22=3 \times 7+1$. This contradiction proves the result. (3 marks)
c) The contrapositive is:

Let $a, b \in \mathbb{R}$. If $(a+b)^{2} \leq 4 a b$ then $a=b$.
Proof: From $(a+b)^{2} \leq 4 a b$ we have $a^{2}+2 a b+b^{2} \leq 4 a b$, so $(a-b)^{2} \leq 0$. This is possible only if $a-b=0$, that is $a=b$. (6 marks)

7.

Context X is a subset of euclidean n-space. (1 mark)
Hypothesis X is closed and X is bounded. (1 mark)
Conclusion X is compact.(1 mark)
Contrapositive Let X be a subset of euclidean n-space. If X is not compact then X is not closed or X is not bounded. (2 marks)
a) Nothing: hypothesis of theorem not fully satisfied. (2 marks)
b) X is not closed or X is not bounded. From contrapositive.(2 marks)
c) X is not bounded. From (b) and ruling out 'not closed'. (2 marks)
d) Nothing: not hypothesis of theorem or contrapositive. (2 marks)

However if the converse of the theorem is true then X compact would imply both X closed and X bounded. Since neither is the case we can deduce X is not compact. (We could deduce this merely from one of ' X not closed', ' X not bounded'.) (2 marks)
8.
a) False. ($x=0$ gives $\cos x=1$.) (2 marks)
b) True. (Take $n=-3$.) (3 marks)
c) False. (Take $x=2$. Then there is no y with $\cos y=x$.) (3 marks)
d) True. (Take $m=1$.) (3 marks)
e) False. (Take $y=\frac{1}{2}$. Then $x<y-1=-\frac{1}{2}$ cannot hold for $x \in \mathbb{R}^{+}$.) (4 marks.)

