THE UNIVERSITY of LIVERPOOL

1. Give the names of the following (lower case) Greek letters: τ, ω. Write the lower case Greek letters theta and rho.

2.

For each of the following sets S, give a function $f(n)$ such that

$$
S=\{f(n) \mid n \in \mathbb{N}\}
$$

(Recall that $\mathbb{N}=\{0,1,2,3,4, \ldots\}$.)
a) $S=\{-18,-8,2,12,22,32, \ldots\}$.
b) $\quad S=\{m \in \mathbb{N} \mid m>0$ and m is a multiple of 4$\}$.
c) S is the set of all even integers, that is $S=\{\ldots-6,-4,-2,0,2,4,6, \ldots\}$.
[12 marks]
3. Negate each of the following statements:
a) $\quad a=1$ or $a \geq 2$.
b) $x>y>z$.
c) If $f(x)<f(y)$ then $x<y$.
d) $\exists N \in \mathbb{N}, \forall x \in \mathbb{R}, f(x)<N$ and $g(x)<N$.
4.

Definition: Let $f(x)$ be a (real-valued) function. Then $f(x)$ is injective if for all x, y in the domain of f,

$$
f(x)=f(y) \Longrightarrow x=y
$$

a) Write down what it means for f not to be injective.
b) Prove that the function $f(x)=10-3 x, x \in \mathbb{R}$ is injective.
c) Prove that the function $f(x)=x^{2}+x, x \geq-1$ is not injective.
d) Prove that the function $f(x)=x^{2}+x, x \geq 0$ is injective.

THE UNIVERSITY of LIVERPOOL

5. Write down carefully the meaning of the statement that $m \mid n$ (' m divides n '), where m and n are integers.

Definition: Let R be a relation on a set X. Then R is an equivalence relation if for all $x, y, z \in X$ the following three conditions hold:
i) $x R x$.
ii) If $x R y$ then $y R x$.
iii) If $x R y$ and $y R z$ then $x R z$.

Determine whether or not the following relations R on the given sets X are equivalence relations. You should justify your answers carefully, working directly from the definitions.
a) $\quad X=\mathbb{Z}, x R y$ if $x \neq y+1$.
b) $\quad X=\mathbb{Z}, x R y$ if $10 \mid(x-y)$.
c) $\quad X=\{n \in \mathbb{N} \mid n \geq 2\}, x R y$ if there is a prime number which divides both x and y. (Recall that a prime number is an element of the same set X which has no factor other than itself and 1.)
[14 marks]

6.

a) Prove the following proposition.

Let m and n be integers. If m and n are odd then $m n$ is odd.
State the converse of this proposition and also state, with a proof, whether the converse is true.
b) Prove the following proposition:

There do not exist integers m and n such that $6 m+9 n=22$.
c) Let P be the following proposition:

Let $a, b \in \mathbb{R}$. If $a \neq b$ then $(a+b)^{2}>4 a b$.
State and prove the contrapositive of P.

THE UNIVERSITY
 of LIVERPOOL

7. Consider the following theorem. You are not expected to understand what it means.
Theorem Let X be a subset of euclidean n-space. If X is closed and X is bounded then X is compact.

Identify the context, hypothesis and conclusion of this theorem. State its contrapositive.

What, if anything, can you deduce from this theorem, given a subset X of euclidean n-space which is
a) closed?
b) not compact?
c) closed and not compact?
d) neither closed nor bounded?

Give a brief reason in each case. Would your answer to (d) change if you are also told that the converse of the above theorem is true?
[15 marks]
8. Determine whether each of the following statements is true or false, giving a brief reason in each case. Recall that $\mathbb{N}=\{0,1,2,3, \ldots\}$.
In part e), $\mathbb{R}^{+}=\{x \in \mathbb{R} \mid x>0\}$.
a) $\forall x \in \mathbb{R}, \cos x<1$.
b) $\exists n \in \mathbb{Z}, n<0$ and $(n+1)^{2}=4$.
c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \cos y=x$.
d) $\exists m \in \mathbb{N}, \forall n \in \mathbb{N}, m n=n$.
e) $\forall y \in \mathbb{R}^{+}, \exists x \in \mathbb{R}^{+}, x<y-1$.

