MATH104 Exam May 2006, Solutions

All questions except q. 1 are standard homework examples

1. sigma, chi, ψ, β. (2 marks each.)
2.

a) \mathbb{Z} contains $-1,0$, and 6 but not 9.5 .
b) $\left\{x \in \mathbb{R} \mid x>-1\right.$ and $\left.x^{2}<20\right\}$ contains 0 but not -1 or 9.5 or 6 .
c) $\left\{\left.\frac{1}{2} n^{2}-3 \right\rvert\, n \in \mathbb{Z}\right\}$ contains -1 (take $n=2$) and 9.5 (take $n=5$) but not 0 (there is no $n \in \mathbb{Z}$ with $n^{2}=6$) or 6 (there is no $n \in \mathbb{Z}$ with $n^{2}=18$).
(2 marks for a), 4 marks for b) and 6 marks for c).)
3.
a) $a \leq 1$ and $a \geq-2$ (or: $-2 \leq a \leq 1$) (2 marks)
b) $x>y$ or $y>z \quad$ (3 marks)
c) There exist x and y with $x>y$ and $f(x) \leq f(y) \quad$ (3 marks)
d) There exists $x \in \mathbb{R}$ such that for all $y \in \mathbb{R}, x \leq y$ or $f(x)>f(y) \quad$ (4 marks)
4.
a) f is not injective if there exist $x, y \in \mathbb{R}$ such that $f(x)=f(y)$ but $x \neq y$. (2 marks)
b) $f(x)$ is injective. For let $x, y \in \mathbb{R}$ and suppose $f(x)=f(y)$. Then $8 x+12=8 y+12$ and rearranging gives $8 x=8 y$ so $x=y$. (4 marks)
c) $x^{3}-x=0$ for $x=0$ and for $x=1$. So let $x=0, y=1$. Then $f(x)=f(y)=0$ but $x \neq y$. Hence f is not injective. (4 marks)
5.

For integers m and n the statement $m \mid n$ means that there exists an integer k with $n=k m$.
a) R is not an equivalence relation. For $\operatorname{not}(-1 R-1)$ since $-1+(-1)$ is not >0. Hence property i) fails.
b) R is an equivalence relation. For let x, y, and z be any integers. Then
i) $x-x=0$ and $4 \mid 0$ since $0=0 \times 4$, so $x R x$.
ii) If $x R y$ then $x-y=4 k$, for some $k \in \mathbb{Z}$ so $y-x=4(-k)$, and $-k \in \mathbb{Z}$ so $y R x$.
iii) If $x R y$ and $y R z$ then $x-y=4 k$ and $y-z=4 l$ for some integers k, l so $x-z=$ $(x-y)+(y-z)=4(k+l)$, i.e. $x R z$.
c) R is an equivalence relation. For let x, y, and z be any elements of X. Then
i) $x \mid x$ (true for any integer x).
ii) If $x R y$ then $x=y$, since no element of X divides any other element. Hence $y \mid x$.
iii) As in ii), If $x R y$ and $y R z$ then $x=y$ and $y=z$ so $x=z$ and $x \mid z$.
(3 marks for a), 6 marks for b), and 5 marks for c).)

6.

a) Let m and n be integers and suppose that m and n are both odd. Then $m=2 k_{1}+1, n=$ $2 k_{2}+1$ for some integers k_{1}, k_{2}. Hence $3 m+5 n=2\left(3 k_{1}+5 k_{2}+1\right)$, which is of the form $2 k_{3}$ for an integer k_{3} and hence even.

The converse states: Let $m, n \in \mathbb{Z}$. If $3 m+5 n$ is even then m and n are odd. This is false: take $m=n=2$, then $3 m+5 n=16$ which is even, but neither m nor n is odd.
b) The contrapositive of P is: Let $m, n \in \mathbb{Z}$. If m is even and n is even then $m+n$ is even.

Proof: Let $m, n \in \mathbb{Z}$ and suppose m and n are both even. Thus $m=2 k_{1}$ and $n=2 k_{2}$ for $k_{1}, k_{2} \in \mathbb{Z}$. It follows that $m+n=2\left(k_{1}+k_{2}\right)=2 k$ where $k \in \mathbb{Z}$. Hence $m+n$ is even.
c) We shall prove the contrapositive:

Let $a, b \in \mathbb{R}$. If $(a+b)^{2} \leq 4 a b$ then $a=b$.
Proof: From $(a+b)^{2} \leq 4 a b$ we have $a^{2}+2 a b+b^{2} \leq 4 a b$, so $(a-b)^{2} \leq 0$. This is possible only if $a-b=0$, that is $a=b$.
[A proof by contradiction is also of course acceptable.]
(6 marks for a), 4 marks for b), 5 marks for c))
7.

Context F and G are unfoldings. (1 mark.)
Hypothesis F is versal and F is induced from G. (1 mark.)
Conclusion G is versal. (1 mark.)
Contrapositive Let F, G be unfoldings. If G is not versal then F is not versal or F is not induced from G. (2 marks.)
a) Nothing. (2 marks.)
b) F is not induced from G. (3 marks.)
c) Nothing. (2 marks.)
d) F is not versal. (2 marks.)
8.
a) True. (Since $n^{2} \geq 0$ we have $\left.n^{2}+1>0\right)$ (3 marks.)
b) False. ($n=0,1$ do not work and $n \geq 2$ makes $n^{2} \geq 4$.) (3 marks.)
c) False. (Take $m=11$ and let $n \in \mathbb{N}$; then $m+n \geq 11$ so cannot equal 10.) (3 marks.)
d) True. (Take $m=0$.) (3 marks.)
e) True. (Take $x=\frac{1}{2} y^{2}$, which is >0, hence in \mathbb{R}^{+}, and is $<y^{2}$.) (3 marks.)

