1. Give the names of the following (lower case) Greek letters: σ, χ. Write the lower case Greek letters psi and beta.
2. State whether or not each of the following numbers:
i) -1 ;
ii) 0 ;
iii) 9.5;
iv) 6 ;
is an element of each of the following sets. For each possible combination of one of i) - iv) with one of a) - c), you should either state explicitly that the given number is an element of the given set, or state explicitly that it isn't.
a) \mathbb{Z}.
b) $\quad\left\{x \in \mathbb{R} \mid x>-1\right.$ and $\left.x^{2}<20\right\}$.
c) $\left\{\left.\frac{1}{2} n^{2}-3 \right\rvert\, n \in \mathbb{Z}\right\}$.
[12 marks]
3. Negate each of the following statements:
a) $\quad a>1$ or $a<-2$.
b) $x \leq y \leq z$.
c) If $x>y$ then $f(x)>f(y)$.
d) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x>y$ and $f(x) \leq f(y)$.

4.

Definition: Let $f(x)$ be a (real-valued) function. Then $f(x)$ is injective if for all $x, y \in \mathbb{R}$,

$$
f(x)=f(y) \Longrightarrow x=y
$$

a) Write down what it means for f not to be injective.
b) Determine whether or not the function $f(x)=8 x+12$ is injective. You should justify your answer carefully, working directly from the definition.
c) Show that the function $f(x)=x^{3}-x$ is not injective. Again justify your answer from the definition.
5. Write down carefully the meaning of the statement that $m \mid n$ (' m divides n '), where m and n are integers.

Definition: Let R be a relation on a set X. Then R is an equivalence relation if for all $x, y, z \in X$ the following three conditions hold:
i) $x R x$.
ii) If $x R y$ then $y R x$.
iii) If $x R y$ and $y R z$ then $x R z$.

Determine whether or not the following relations R on the given sets X are equivalence relations. You should justify your answers carefully, working directly from the definitions.
a) $\quad X=\mathbb{R}, x R y$ if $x+y>0$.
b) $\quad X=\mathbb{Z}, x R y$ if $4 \mid(x-y)$.
c) $\quad X=\{2,3,5,7,11\}, x R y$ if $x \mid y$.
6.
a) Prove the following proposition:

Let m and n be integers. If m and n are odd then $3 m+5 n$ is even.
State the converse of this proposition and also state, with a reason, whether the converse is true.
b) Let P be the proposition:

Let $m, n \in \mathbb{Z}$. If $m+n$ is odd then m is odd or n is odd.
State and prove the contrapositive of P.
c) Prove the following proposition:

Let $a, b \in \mathbb{R}$. If $a \neq b$ then $(a+b)^{2}>4 a b$.
7. Consider the following theorem. You are not expected to understand what it means.

Theorem Let F, G be unfoldings. If F is versal and F is induced from G then G is versal.

Identify the context, hypothesis and conclusion of this theorem. State its contrapositive.

What, if anything, can you deduce from this theorem, given unfoldings F, G for which
a) $\quad F$ and G are both versal?
b) $\quad F$ is versal and G is not versal?
c) F is induced from G and G is versal?
d) F is induced from G and G is not versal?
8. Determine whether each of the following statements is true or false. Justify your answers briefly. Recall that $\mathbb{N}=\{0,1,2,3, \ldots\}$.
In part e), $\mathbb{R}^{+}=\{x \in \mathbb{R} \mid x>0\}$.
a) $\forall n \in \mathbb{Z}, n^{2}+1>0$.
b) $\exists n \in \mathbb{N}, n^{2}=3$.
c) $\forall m \in \mathbb{N}, \exists n \in \mathbb{N}, m+n=10$.
d) $\exists m \in \mathbb{N}, \forall n \in \mathbb{N}, m+n=n$.
e) $\forall y \in \mathbb{R}^{+}, \exists x \in \mathbb{R}^{+}, x<y^{2}$.
[15 marks]

