THE UNIVERSITY
 of LIVERPOOL

1. Give the names of the following (lower case) Greek letters: τ, ϵ. Write the lower case Greek letters beta and phi. [8 marks]
2. For each of the following sets S, give a function $f(n)$ such that

$$
S=\{f(n) \mid n \in \mathbb{N}\}
$$

(Recall that $\mathbb{N}=\{0,1,2,3,4, \ldots\}$.)
a) $S=\{-10,-3,4,11,18,25, \ldots\}$.
b) $S=\{4,8,16,32,64 \ldots\}$.
c) $S=\mathbb{Z}=\{\ldots-3,-2,-1,0,1,2,3, \ldots\}$.
[12 marks]
3. Negate each of the following statements:
a) $2 x+5 y=6$.
b) $-1 \leq a<1$.
c) If $x=y+2 \pi$ then $f(x)=f(y)$.
d) $\forall n \in \mathbb{N}, \exists x \in \mathbb{R}, f(x)>n$.
[12 marks]
4.

Definition: Let $f(x)$ be a (real-valued) function. Then $f(x)$ is injective if for all $x, y \in \mathbb{R}$,

$$
f(x)=f(y) \Longrightarrow x=y
$$

a) Write down what it means for f not to be injective.
b) Determine whether or not the function $f(x)=20-5 x$ is injective. You should justify your answer carefully, working directly from the definition.
c) Solve the equation $x^{2}+x=0$ where $x \in \mathbb{R}$. Hence show that the function $f(x)=x^{2}+x$ is not injective.
[10 marks]

THE UNIVERSITY
 of LIVERPOOL

5. Write down carefully the meaning of the statement that $m \mid n$ (' m divides n '), where m and n are integers.

Definition: Let R be a relation on a set X. Then R is an equivalence relation if for all $x, y, z \in X$ the following three conditions hold:
i) $x R x$.
ii) If $x R y$ then $y R x$.
iii) If $x R y$ and $y R z$ then $x R z$.

Determine whether or not the following relations R on the given sets X are equivalence relations. You should justify your answers carefully, working directly from the definitions.
a) $\quad X=\mathbb{R}, x R y$ if $2 x \geq y$.
b) $\quad X=\mathbb{Z}, x R y$ if $6 \mid(x-y)$.
c) $\quad X=\mathbb{Z}, x R y$ if $x+y$ is even.
[14 marks]
6. Write proofs of the following statements. You should work from the definitions:

Definition: Let $n \in \mathbb{Z}$. Then
(i) n is even if there exists an integer k such that $n=2 k$.
(ii) n is odd if there exists an integer k such that $n=2 k+1$.
a) Let $m, n \in \mathbb{Z}$. If m is even and n is odd then $m+n$ is odd.
b) If $n \in \mathbb{Z}$ is odd then n^{2} is odd, and if $n \in \mathbb{Z}$ is even then n^{2} is even.
c) It is impossible for the square of an integer n to be of the form $4 m+2$ for an integer m. (Hint: consider separately the cases where n is even and n is odd.)
[15 marks]

THE UNIVERSITY
 of LIVERPOOL

7. Consider the following theorem. You are not expected to understand what it means.

Theorem Let X be a T_{1}-space. If X is metrizable and X is separable, then X has a countable base.

Identify the context, hypothesis, and conclusion of the theorem. State its contrapositive.

What, if anything, does the theorem tell you about a T_{1}-space X which is:
a) not metrizable?
b) neither metrizable nor separable?
c) metrizable and does not have a countable base?
d) has a countable base and is not separable?
8. Determine whether each of the following statements is true or false. Justify your answers briefly. In part e), $\mathbb{Z}^{+}=\{x \in \mathbb{Z} \mid x>0\}$.
a) $\exists n \in \mathbb{Z}, n+5 \leq 0$.
b) $\forall n \in \mathbb{Z}, n+5 \leq 0$.
c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^{2}=x$.
d) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^{2}>x$.
e) $\forall n \in \mathbb{Z}^{+}, \exists x \in \mathbb{R}, 0<x<\frac{1}{n}$.
[15 marks]

