

1. Give the names of the following (lower case) Greek letters: τ , ϵ . Write the lower case Greek letters *beta* and *phi*. [8 marks]

2. For each of the following sets S, give a function f(n) such that

$$S = \{ f(n) \mid n \in \mathbb{N} \}.$$

(Recall that $\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}.$)

- a) $S = \{-10, -3, 4, 11, 18, 25, \ldots\}.$
- b) $S = \{4, 8, 16, 32, 64...\}.$
- c) $S = \mathbb{Z} = \{\dots -3, -2, -1, 0, 1, 2, 3, \dots\}.$ [12 marks]

3. Negate each of the following statements:

- a) 2x + 5y = 6.
- b) $-1 \le a < 1.$

c) If
$$x = y + 2\pi$$
 then $f(x) = f(y)$.

d) $\forall n \in \mathbb{N}, \exists x \in \mathbb{R}, f(x) > n.$ [12 marks]

4.

Definition: Let f(x) be a (real-valued) function. Then f(x) is *injective* if for all $x, y \in \mathbb{R}$,

$$f(x) = f(y) \implies x = y.$$

a) Write down what it means for f not to be injective.

b) Determine whether or not the function f(x) = 20 - 5x is injective. You should justify your answer carefully, working directly from the definition.

c) Solve the equation $x^2 + x = 0$ where $x \in \mathbb{R}$. Hence show that the function $f(x) = x^2 + x$ is not injective.

[10 marks]

CONTINUED

5. Write down carefully the meaning of the statement that m|n ('m divides n'), where m and n are integers.

Definition: Let R be a relation on a set X. Then R is an equivalence relation if for all $x, y, z \in X$ the following three conditions hold:

- i) x R x.
- ii) If x R y then y R x.
- iii) If x R y and y R z then x R z.

Determine whether or not the following relations R on the given sets X are equivalence relations. You should justify your answers carefully, working directly from the definitions.

- a) $X = \mathbb{R}, x R y \text{ if } 2x \ge y.$
- b) $X = \mathbb{Z}, x R y \text{ if } 6|(x y).$
- c) $X = \mathbb{Z}, x R y$ if x + y is even. [14 marks]

6. Write proofs of the following statements. You should work from the definitions:

Definition: Let $n \in \mathbb{Z}$. Then

- (i) n is even if there exists an integer k such that n = 2k.
- (ii) n is odd if there exists an integer k such that n = 2k + 1.
 - a) Let $m, n \in \mathbb{Z}$. If m is even and n is odd then m + n is odd.
 - b) If $n \in \mathbb{Z}$ is odd then n^2 is odd, and if $n \in \mathbb{Z}$ is even then n^2 is even.

c) It is impossible for the square of an integer n to be of the form 4m + 2 for an integer m. (Hint: consider separately the cases where n is even and n is odd.) [15 marks]

7. Consider the following theorem. You are not expected to understand what it means.

Theorem Let X be a T_1 -space. If X is metrizable and X is separable, then X has a countable base.

Identify the context, hypothesis, and conclusion of the theorem. State its contrapositive.

What, if anything, does the theorem tell you about a T_1 -space X which is:

- a) not metrizable?
- b) neither metrizable nor separable?
- c) metrizable and does not have a countable base?
- d) has a countable base and is not separable? [14 marks]

8. Determine whether each of the following statements is true or false. Justify your answers briefly. In part e), $\mathbb{Z}^+ = \{x \in \mathbb{Z} \mid x > 0\}.$

- a) $\exists n \in \mathbb{Z}, n+5 \leq 0.$
- b) $\forall n \in \mathbb{Z}, n+5 \leq 0.$
- c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^2 = x.$
- d) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^2 > x.$
- e) $\forall n \in \mathbb{Z}^+, \exists x \in \mathbb{R}, 0 < x < \frac{1}{n}.$ [15 marks]