
Solutions to MATH103 SEPTEMBER 2007 Examination

Note: all questions are similar to homework or examples done in class.

Section A

1. z = 2 − 3i gives z = 2 + 3i so the required expressions is

1

(1 − 3i)2
=

1

−8 − 6i
=

−8 + 6i

100
,

and the real part is − 2

25
while the imaginary part is 3

50
.

[1 mark for z, 3 marks for calculation.]

2. |z| =
√

(−2)2 + (−2)2 = 2
√

2 [1 mark]

Let θ = arg(z). Then tan θ = −2

−2
= 1, so θ = π

4
or 5π

4
. Since z is in the 3rd quadrant, 5π

4

is correct. Thus z = 2
√

2e5πi/4.

0

5π/4

x

y

−2

−2
  −2−2 i

[1 mark for diagram, 1 mark for arg of z]

By de Moivre’s theorem,

z5 = (2
√

2)5e5× 5πi

4 = 215/2e25πi/4 = 128
√

2eπi/4 = 128(1 + i) .

The real part of z5 is 128 and the imaginary part is 128. [3 marks]

3. (5 + 2i)2 = 52 + 2 × 5 × 2i + (2i)2 = 25 + 20i − 4 = 21 + 20i [1 mark]

Thus the square roots of 21 + 20i are ±(5 + 2i). Using the quadratic formula,

z =
−3 − 4i ±

√

(3 + 4i)2 − 4(−7 + i)

2
=

−3 − 4i ±
√

9 + 24i − 16 + 28 − 4i

2

=
−3 − 4i ±

√
21 + 20i

2
=

−3 − 4i ± (5 + 2i)

2
= 1 − i or − 4 − 3i.

[3 marks]

4. m = (a + b)/2 and p = 3

5
c + 2

5
m = 1

5
a + 1

5
b + 3

5
c, so that

→
PA +

→
PB + 3

→
PC=

a−p+b−p+3(c−p) = (a+b+3c)−5p = (a+b+3c)− (a+b+3c) = 0. [4 marks]
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5. (i)
→

AB= (0 − 2, 1 + 1,−3 − 1) = (−2, 2,−4),
→

AC= (3, 2, 1), [1 mark]
→

AB ×
→

AC= (2 + 8, 2 − 12,−4 − 6) = (10,−10,−10). Checking perpendicularity:
(10,−10,−10)·(−2, 2,−4) = −20−20+40 = 0 and (10,−10,−10)·(3, 2, 1) = 30−20−10 =
0, as required.

[3 marks]

(ii) The area of the triangle is 1

2
|

→
AB ×

→
AC | = 1

2

√

102 + (−10)2 + (−10)2 = 5
√

3.

[1 mark]

Let h be the length of the perpendicular from A to BC,
→

BC= (5, 0, 5). Then the area

of the triangle is 1

2
h|

→
BC | = 1

2
h
√

52 + 02 + 52 = 5h/
√

2. Equating this to the area found

above we get h =
√

6. [2 marks]

(iii) A normal to the plane ABC is given by
→

AB ×
→

AC= (10,−10,−10) as above. To
reduce the numbers, it is better to take one tenth of it: n = (1,−1,−1). An equation is
then

(x − a) · n = 0, that is (x − 2, y + 1, z − 1) · (1,−1,−1) = 0,

that is (x − 2) − (y + 1) − (z − 1) = 0 giving x − y − z − 2 = 0. We can equally well use
(x − b) · n = 0 or (x − c) · n = 0; these give the same answer.

Alternatively, the plane will be x− y − z + k = 0 for some number k, since its normal
is (1,−1,−1) and substituting the coordinates of A (or B or C) in this equation gives
k = −2. [3 marks]

6. The pairs given are of the form (x, y) so we have to solve the equations

p + q + r = 8 (1)

p − q + r = −2 (2)

p + 2q + 4r = 10 (3)

(1)–(2) gives 2q = 10 so q = 5. Then (3)–(1) gives q + 3r = 2 so 3r = 2 − q = −3 giving
r = −1. Finally (1) gives p = 4.

Answer: p = 4, q = 5, r = −1, that is y = 4 + 5x − x2.
[2 marks for setting up the equations and 3 for solving them]

7. (a) u = (21,−28,−14), v = (−6, 8,−4) are linearly independent since the second
is not a scalar multiple of the first (note that the first two components of v are −2/7
times the first two components of u, but the third component of v is 2/7 times the third
component of u). There are only two vectors so they cannot span R3. [2 marks]

(b) Putting the vectors, v, u, w as the rows of a matrix and using row reduction gives






1 2 −1
3 −1 4

−7 7 −14





 −→







1 2 −1
0 −7 7
0 21 −21





 −→







1 2 −1
0 −7 7
0 0 0







using R2 − 3R1, R3 + 7R1, and then R3 + 3R2. The row of zeros shows that the three
vectors are linearly dependent. Since they are linearly dependent they do not span R3.

[3 marks]
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The rows of the second matrix are v, u− 3v, w + 7v respectively, and we therefore have
w + 7v + 3(u− 3v) = 0, which gives 3u− 2v + w = 0. [2 marks]

8. For B we need only multiply the diagonal entries, since B is upper triangular. So
det(B) = 1 × (−2) × 3 = −6. [1 mark]

Expanding det(A) by the top row (which contains a zero and therefore gives a short
calculation) gives
det(A) = 2(−8 + 5) − 3(14 − 15) = −6 + 3 = −3. [3 marks]

Using rules for determinants we now get
det(B2A−1) = (det(B))2/ det(A) = 36/(−3) = −12.
The matrix B − 3I is also upper triangular, and has diagonal entries −2, −5, 0. The
determinant is the product of these, hence is 0. [2 marks]

9. (i) The eigenvalues of A are the solutions of the equation

0 = det(A − λI) = det

(

−2 − λ 2
2 1 − λ

)

.

This gives (−2−λ)(1−λ)−22 = 0, that is λ2+λ−6 = 0, which factorises as (λ+3)(λ−2) =
0 (or solve by the quadratic formula), so that the eigenvalues are −3 and 2. [2 marks]

(ii) For λ = −3, we have A+3I =

(

1 2
2 4

)

. Hence we can take for an eigenvector (2,−1)

or e1 = ( 2√
5
,− 1√

5
) if making it of length 1. For λ = 2, we get A− 2I =

(

−4 2
2 −1

)

and

therefore for a unit eigenvector we can take e2 = ( 1√
5
, 2√

5
). [5 marks]

(iii) Taking now P =

(

2√
5

1√
5

− 1√
5

2√
5

)

and D =

(

−3 0
0 2

)

we have P⊤A P = D.

[2 marks]

Section B

10. (i) We have b =
√

2

2
+

√
2

2
i and c =

√
3

2
+ 1

2
i. Therefore bc = e5πi/12 = cos 5π

12
+ i sin 5π

12
=

√
6−

√
2

4
+ i

√
6+

√
2

4
, which gives cos 5π

12
=

√
6−

√
2

4
and sin 5π

12
=

√
6+

√
2

4
[3 marks]

(ii) |a| =
√

02 + (1/64)2 = 1/64 = 2−6. Since a is purely imaginary and has positive

imaginary part, its argument is π/2. Thus a = 1

64
eπi/2. [2 marks]

Now write z = reiθ, giving z6 = r6e6iθ. Equating this to a = 2−6eπi/2 gives
r6 = 2−6, so that, r being real and > 0, we have r = 1/2,
6θ = π

2
+ 2kπ, where we take k = 0, 1, 2, 3, 4, 5 for the distinct solutions (for zn = a we

take k = 0, 1, . . . , n − 1).
Hence, θ = π

12
+ kπ

3
, that is, θ = π

12
, 5π

12
, 3π

4
, 13π

12
, 17π

12
, and 7π

4
. The solutions

z0 = 1

2
eπi/12, z1 = 1

2
e5πi/12, z2 = 1

2
e3πi/4, z3 = 1

2
e13πi/12, z4 = 1

2
e17πi/12, z5 = 1

2
e7πi/4 are

indicated approximately on the diagram.
[5 marks for the solution, 3 for the diagram]
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z 1
z 2

z 3

z 4

z 5

z 0 π/12π/3

r =
x

y

1/2

The solutions in the 1st quadrant are z1 = 1

2
e5πi/12 =

√
6−

√
2

8
+ i

√
6+

√
2

8
and z0 =

1

2
eπi/12 =

√
6+

√
2

8
+ i

√
6−

√
2

8
(swapping the real and imaginary parts). [2 marks]

11. (i) We have: A is invertible if and only if det(A) 6= 0. Calculating det(A), evaluating
by the first column gives det(A) = 1 ·(3 ·10−(α−1) ·(−1))−2 ·((α+2)(α−1)−(−2) ·3) =
−2α2 − α + 21 = (−2α − 7)(α − 3). Hence A is invertible if and only if α 6= −7/2, 3, as
required.

[4 marks for evaluating the determinant, 1 for deducing when A is invertible]

(ii) We need the inverse of A0 =







1 2 −2
0 3 −1

−2 −1 10





. The matrix of minors of A0 is







29 −2 6
18 6 3
4 −1 3





. The matrix of cofactors of A0 is







29 2 6
−18 6 −3

4 1 3





 and its transpose is







29 −18 4
2 6 1
6 −3 3





. The determinant of A0 is 21, using the formula found in (i). Dividing

all the terms of the last matrix by the determinant we get

A−1

0 =

















29

21
−6

7

4

21

2

21

2

7

1

21

2

7
−1

7

1

7

















[6 marks]

(iii) The matrix of the left hand side of the system is A3, with determinant zero. Using
row operations on the augmented matrix of the equations we get







1 5 −2 a
0 3 2 b

−2 −1 10 c





 −→







1 5 −2 a
0 3 2 b
0 9 6 c + 2a





 −→







1 −5 −2 a
0 3 2 b
0 0 0 c + 2a − 3b







using R3 + 2R1 on the first step and R3 − 3R2 on the second. The required condition is
the vanishing of the last term in the final third row: 2a − 3b + c = 0. [4 marks]
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12. (i)

x + 8y + 6z = 33 (4)

−2x + 12y + 9z = 53 (5)

Taking (5)+2×(4) gives 28y+21z = 119, that is 4y+3z = 17 or y = −3

4
z+ 17

4
. Substituting

in (4) gives x = −8(−3

4
z + 17

4
) − 6z + 33 = −1. The parametric form of L is therefore

(−1,−3

4
z+ 17

4
, z) or, introducing z = 4t: (−1,−3t+ 17

4
, 4t) = (−1, 17/4, 0)+t(0,−3, 4).

[3 marks]

(ii)
→

AB= (1, 6,−4) so the general point of L′ is
(−2,−9, 10) + λ(1, 6,−4) = (−2 + λ,−9 + 6λ, 10 − 4λ). [2 marks]

(iii) L′ meets the plane x − 2y + z = −4 in the point P whose parameter λ is obtained
by substituting the general point as in (ii) into the equation of the plane. This gives
−2 + λ + 18 − 12λ + 10 − 4λ = −4, that is λ = 2. Thus the point P of intersection is
(−2,−9, 10) + 2(1, 6,−4) = (0, 3, 2). [3 marks]

(iv) In R3, the distance from point P to the line passing through point C and having
direction vector v can be calculated using the formula

d = |
→

PC ×v|/|v| .

For L, we have C = (−1, 17/4, 0) and v = (0,−3, 4). Therefore, |v| = 5,
→

PC=

(−1, 5/4,−2) and |
→

PC ×v| = |(−1, 4, 3)| =
√

26. Hence d =
√

26

5
. [3 marks]

(v) In R3, the distance between two non-parallel lines, one passing through point A and
having direction vector u and the other passing through point C in direction v, is given
by the formula

ρ = |(u× v)·
→

AC |/|u× v| .
Taking L′ and L for such two lines, we have:

u = (1, 6,−4) , v = (0,−3, 4) ,
→

AC= (−1, 17/4, 0)−(−2,−9, 10) = (1, 53/4,−10) .

This gives

u × v = (12,−4,−3) , (u × v)·
→

AC= −11 , |u× v| = 13 .

Finally, ρ = 11/13. [4 marks]

13. (i) Writing the vectors v3,v1,v2,v4 as the rows of a matrix and using row reduction
gives











−1 2 0 3
0 1 −2 8
4 −1 3 −7
2 7 4 4











−→











−1 2 0 3
0 1 −2 8
0 7 3 5
0 11 4 10











−→











−1 2 0 3
0 1 −2 8
0 0 17 −51
0 0 26 −78











−→











−1 2 0 3
0 1 −2 8
0 0 1 −3
0 0 1 −3











−→











−1 2 0 3
0 1 −2 8
0 0 1 −3
0 0 0 0











,
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where the row operations are R3 + 4R1 and R4 + 2R1, then R3 − 7R2 and R4 − 11R2,
then R3/17 and R4/26 and finally R4 − R3. There is a row of zeros; this means that the
vectors are linearly dependent. [6 marks]

(ii) The three nonzero rows of the reduced matrix in (i) have the same span as the four
given vectors, and they are linearly independent because this process always results in
linearly independent vectors. To simplify, we can clear the 3rd entry in the 2nd row using
3rd row, then the 2nd entry in the 1st row using the new 2nd row, and finally change the
sign of the new top row. This provides w1 = (1, 0, 0, 1), w2 = (0, 1, 0, 2), w3 = (0, 0, 1,−3)
as suitable spanning vectors.

We can extend these to a basis for R4 by adding any row to the matrix with w1, w2,w3

as rows in such a way as to give four independent rows. The simplest thing is to add
(0, 0, 0, 1).

[2 marks for the independent vectors spanning S, 2 for completing to a basis]

(iii) For u1, we need only check whether there are scalars a, b, c such that
a(1, 0, 0, 1) + b(0, 1, 0, 2) + c(0, 0, 1,−3) = (1, 1, 1, 0). From the first three components
we immediately read a = b = c = 1 which also satisfy the last component equation
a + 2b − 3c = 0. Hence u1 ∈ S.

Similarly, for u2, a(1, 0, 0, 1) + b(0, 1, 0, 2) + c(0, 0, 1,−3) = (1,−1, 1, 2), and we get
a = c = 1 and b = −1, which this time do not satisfy the last component equation
a + 2b − 3c = 2. Thus u2 is not in S. [3 marks]

(iv) From the above, S ∩ T is at least a line since the line in T spanned by u1 is in S.
The most S ∩ T could be is the whole 2-plane T . But this is not possible as u2 is in T ,
but not in S. We conclude that S ∩ T is a line. [2 marks]

14. We start with the characteristic equation

det(A − λI) = det







−1 − λ 1 −1
2 3 − λ −2
2 5 −4 − λ





 = 0 .

Expanding along the first row and making simplifications we get:

(−1−λ)((3−λ) · (−4−λ)− (−2) · 5)−1 · (2 · (−4−λ)− (−2) · 2)−1((2 · 5− (3−λ) · 2) =

= −λ3 − 2λ2 + λ + 2 = (λ + 2)(1 − λ2) = −(λ + 2)(λ + 1)(λ − 1) = 0

Therefore, the eigenvalues are −2, −1 and 1. We can now pass to eigenvectors. [6 marks]
λ = −2. Then

A + 2I =







1 1 −1
2 5 −2
2 5 −2





 .

The cross-product of the first two rows is (3, 0, 3). Diving this by 3, we take v−2 := (1, 0, 1).
λ = −1. Similarly:

A + I =







0 1 −1
2 4 −2
2 5 −3





 .

Now R1 × R2/2 = (1,−1,−1) =: v−1.
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y = 1. Then

A − I =







−2 1 −1
2 2 −2
2 5 −5







Here R1 × R2/2 = (0,−3,−3). Thus we can take v1 = (0, 1, 1). [7 marks]
We obtain matrix C writing the eigenvectors in columns, and we obtain matrix D

writing the eigenvalues along the diagonal in the order corresponding to the eigenvectors:

C−1AC = D , where C =







1 1 0
0 −1 1
1 −1 1





 and D =







−2 0 0
0 −1 0
0 0 1





 .

[2 marks]
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