

THE UNIVERSITY of LIVERPOOL

SECTION A

1. Let $z=2-3 i$. Find the real and imaginary parts of $\frac{1}{(3-\bar{z})^{2}}$. [4 marks]
2. Let $z=-2-2 i$. Express z in the form $r e^{i \theta}$. (As usual, $r>0$ and θ is real.) Indicate the position of z on a diagram. Use de Moivre's theorem to find the real and imaginary parts of z^{5}.
[6 marks]
3. Verify that $(5+2 i)^{2}=21+20 i$. By means of the quadratic formula, or completing the square, solve the quadratic equation

$$
z^{2}+(3+4 i) z-7+i=0
$$

[4 marks]
4. Let A, B, C be three points with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ respectively. Write down the position vectors
m of M which is the mid-point of $A B$;
p of P which is on $C M$, two-fifth of the distance from C to M.
Show that $\overrightarrow{P A}+\overrightarrow{P B}+3 \overrightarrow{P C}$ is the zero vector.
5. Let $A=(2,-1,1), B=(0,1,-3)$ and $C=(5,1,2)$.
(i) Find the vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A B} \times \overrightarrow{A C}$.

Verify that your vector $\overrightarrow{A B} \times \overrightarrow{A C}$ is perpendicular to the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$, stating your method for doing this.
(ii) Write down the area of the triangle $A B C$ and find the length of the perpendicular from A to the side $B C$. (You need not evaluate any square roots occurring.)
(iii) Find an equation for the plane containing the triangle $A B C$. [3 marks]
6. Find the values of p, q, r such that the curve $y=p+q x+r x^{2}$ passes through the points $(1,8),(-1,-2)$ and $(2,10)$.
[5 marks]
7. For each set of vectors (a) and (b) decide, giving reasons, whether the vectors are linearly independent and also whether they span \mathbf{R}^{3}.

$$
\text { (a) } \mathbf{u}=(21,-28,-14), \mathbf{v}=(-6,8,-4)
$$

(b) $\mathbf{u}=(3,-1,4), \mathbf{v}=(1,2,-1), \mathbf{w}=(-7,7,-14)$.

If the vectors in (a) or (b) are linearly dependent, find a non-trivial linear combination equalling the zero vector.

THE UNIVERSITY
 of LIVERPOOL

8. Find the determinants of the matrices A and B :

$$
A=\left(\begin{array}{rrr}
2 & 3 & 0 \\
-7 & 4 & 1 \\
15 & -5 & -2
\end{array}\right), \quad B=\left(\begin{array}{rrr}
1 & 12 & 5 \\
0 & -2 & 14 \\
0 & 0 & 3
\end{array}\right)
$$

Use the rules for determinants, which should be clearly stated, to write down the determinants of $B^{2} A^{-1}$ and $B-3 I$, where I is the 3×3 identity matrix.
[6 marks]
9. (i) Find the eigenvalues of the matrix $A=\left(\begin{array}{rr}-2 & 2 \\ 2 & 1\end{array}\right)$.
[2 marks]
(ii) For each eigenvalue, find an eigenvector of length 1. (You need not evaluate any square roots which arise.)
[5 marks]
(iii) Write down an orthogonal matrix P and a diagonal matrix D such that $P^{\top} A P=D$.
[2 marks]

SECTION B

10. (i) Express the complex numbers $b=e^{\pi i / 4}$ and $c=e^{\pi i / 6}$ in the cartesian form $x+i y$. Hence, considering the product $b c$, find $\cos \frac{5 \pi}{12}$ and $\sin \frac{5 \pi}{12}$ in the surd form.
(ii) Express the complex number $a=i / 64$ in the form $|a| e^{i \alpha}$. Find all the solutions of the equation $z^{6}=a$ in the form $z=r e^{i \theta}$ and indicate their positions on a diagram. Making use of your result in (i) and of the diagram's symmetry, express all the solutions from the first quadrant in the exact cartesian form involving surds.
[15 marks]
11. Let

$$
A=\left(\begin{array}{ccc}
1 & \alpha+2 & -2 \\
0 & 3 & \alpha-1 \\
-2 & -1 & 10
\end{array}\right)
$$

(i) Show that A is invertible if and only if $\alpha \neq-7 / 2$ and $\alpha \neq 3$. [5 marks]
(ii) Find the inverse of A when $\alpha=0$.
[6 marks]
(iii) Find a condition which a, b and c must satisfy for the system of equations

$$
\begin{aligned}
x+5 y-2 z & =a \\
3 y+2 z & =b \\
-2 x-y+10 z & =c
\end{aligned}
$$

to be consistent.

THE UNIVERSITY of LIVERPOOL

12. Let L denote the line of intersection of the planes in \mathbf{R}^{3} with equations

$$
x+8 y+6 z=33 \quad \text { and } \quad-2 x+12 y+9 z=53
$$

Let L^{\prime} denote the line joining the points $A=(-2,-9,10)$ and $B=(-1,-3,6)$.
(i) Find in parametric form an expression for the general point of L.
[3 marks]
(ii) Write down the vector $\overrightarrow{A B}$ and an expression for the general point of
L^{\prime}.
[2 marks]
(iii) Determine the point P at which L^{\prime} meets the plane

$$
x-2 y+z=-4
$$

(iv) Find the distance from the point P to the line L.
(v) Find the distance between the lines L and L^{\prime}.
[4 marks]
13. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ in \mathbf{R}^{4} are defined by $\mathbf{v}_{1}=(0,1,-2,8), \mathbf{v}_{2}=(4,-1,3,-7), \mathbf{v}_{3}=(-1,2,0,3), \mathbf{v}_{4}=(2,7,4,4)$.
(i) Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly dependent.
[6 marks]
(ii) Let S be the span of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$. Find linearly independent vectors with the same span S. Extend these linearly independent vectors to a basis of \mathbf{R}^{4}.
[4 marks]
(iii) Decide whether the vectors $\mathbf{u}_{1}=(1,1,1,0)$ and $\mathbf{u}_{2}=(1,-1,1,2)$ are in S.
(iv) Let T be the span of \mathbf{u}_{1} and \mathbf{u}_{2}. What is the intersection $S \cap T$?
[2 marks]
14. Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ccc}
-1 & 1 & -1 \\
2 & 3 & -2 \\
2 & 5 & -4
\end{array}\right)
$$

(hint: one of the eigenvalues is -2). Hence write down a matrix C and a diagonal matrix D such that $C^{-1} A C=D$.

