

THE UNIVERSITY of LIVERPOOL

SECTION A

- 1. Let z = 2 3i. Find the real and imaginary parts of $\frac{1}{(3 \overline{z})^2}$. [4 marks]
- **2.** Let z = -2 2i. Express z in the form $re^{i\theta}$. (As usual, r > 0 and θ is real.) Indicate the position of z on a diagram. Use de Moivre's theorem to find the real and imaginary parts of z^5 . [6 marks]
- **3.** Verify that $(5+2i)^2 = 21+20i$. By means of the quadratic formula, or completing the square, solve the quadratic equation

$$z^2 + (3+4i)z - 7 + i = 0.$$
 [4 marks]

4. Let A,B,C be three points with position vectors ${\bf a},{\bf b},{\bf c}$ respectively. Write down the position vectors

 \mathbf{m} of M which is the mid-point of AB;

 \mathbf{p} of P which is on CM, two-fifth of the distance from C to M.

Show that $\overrightarrow{PA} + \overrightarrow{PB} + 3\overrightarrow{PC}$ is the zero vector.

[4 marks]

- 5. Let A = (2, -1, 1), B = (0, 1, -3) and C = (5, 1, 2).
 - (i) Find the vectors \overrightarrow{AB} , \overrightarrow{AC} and $\overrightarrow{AB} \times \overrightarrow{AC}$.

Verify that your vector $\overrightarrow{AB} \times \overrightarrow{AC}$ is perpendicular to the vectors \overrightarrow{AB} and \overrightarrow{AC} , stating your method for doing this. [4 marks]

- (ii) Write down the area of the triangle ABC and find the length of the perpendicular from A to the side BC. (You need not evaluate any square roots occurring.) [3 marks]
 - (iii) Find an equation for the plane containing the triangle ABC. [3 marks]
- **6.** Find the values of p, q, r such that the curve $y = p + qx + rx^2$ passes through the points (1, 8), (-1, -2) and (2, 10). [5 marks]
- 7. For each set of vectors (a) and (b) decide, giving reasons, whether the vectors are linearly independent and also whether they span \mathbb{R}^3 .

(a)
$$\mathbf{u} = (21, -28, -14), \ \mathbf{v} = (-6, 8, -4),$$

(b)
$$\mathbf{u} = (3, -1, 4), \ \mathbf{v} = (1, 2, -1), \ \mathbf{w} = (-7, 7, -14).$$

If the vectors in (a) or (b) are linearly *dependent*, find a non-trivial linear combination equalling the zero vector. [7 marks]

THE UNIVERSITY of LIVERPOOL

8. Find the determinants of the matrices A and B:

$$A = \begin{pmatrix} 2 & 3 & 0 \\ -7 & 4 & 1 \\ 15 & -5 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 12 & 5 \\ 0 & -2 & 14 \\ 0 & 0 & 3 \end{pmatrix}.$$

Use the rules for determinants, which should be clearly stated, to write down the determinants of B^2A^{-1} and B-3I, where I is the 3×3 identity matrix.

[6 marks]

- **9.** (i) Find the eigenvalues of the matrix $A = \begin{pmatrix} -2 & 2 \\ 2 & 1 \end{pmatrix}$. [2 marks]
- (ii) For each eigenvalue, find an eigenvector of length 1. (You need not evaluate any square roots which arise.) [5 marks]
- (iii) Write down an orthogonal matrix P and a diagonal matrix D such that $P^{T}AP = D$. [2 marks]

SECTION B

- 10. (i) Express the complex numbers $b=e^{\pi i/4}$ and $c=e^{\pi i/6}$ in the cartesian form x+iy. Hence, considering the product bc, find $\cos\frac{5\pi}{12}$ and $\sin\frac{5\pi}{12}$ in the surd form.
- (ii) Express the complex number a=i/64 in the form $|a|e^{i\alpha}$. Find all the solutions of the equation $z^6=a$ in the form $z=re^{i\theta}$ and indicate their positions on a diagram. Making use of your result in (i) and of the diagram's symmetry, express all the solutions from the first quadrant in the exact cartesian form involving surds.

[15 marks]

11. Let

$$A = \left(\begin{array}{ccc} 1 & \alpha + 2 & -2 \\ 0 & 3 & \alpha - 1 \\ -2 & -1 & 10 \end{array}\right).$$

- (i) Show that A is invertible if and only if $\alpha \neq -7/2$ and $\alpha \neq 3$. [5 marks]
- (ii) Find the inverse of A when $\alpha = 0$. [6 marks]
- (iii) Find a condition which a,b and c must satisfy for the system of equations

to be consistent. [4 marks]

THE UNIVERSITY of LIVERPOOL

12. Let L denote the line of intersection of the planes in \mathbb{R}^3 with equations

$$x + 8y + 6z = 33$$
 and $-2x + 12y + 9z = 53$.

Let L' denote the line joining the points A = (-2, -9, 10) and B = (-1, -3, 6).

- (i) Find in parametric form an expression for the general point of L. [3 marks]
- (ii) Write down the vector \overrightarrow{AB} and an expression for the general point of L'.
 - (iii) Determine the point P at which L' meets the plane

$$x - 2y + z = -4.$$

- [3 marks]
- (iv) Find the distance from the point P to the line L. [3 marks]
- (v) Find the distance between the lines L and L'. [4 marks]
- 13. Vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ in \mathbf{R}^4 are defined by

$$\mathbf{v}_1 = (0, 1, -2, 8), \ \mathbf{v}_2 = (4, -1, 3, -7), \ \mathbf{v}_3 = (-1, 2, 0, 3), \ \mathbf{v}_4 = (2, 7, 4, 4).$$

- (i) Show that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are linearly dependent. [6 marks]
- (ii) Let S be the span of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. Find linearly independent vectors with the same span S. Extend these linearly independent vectors to a basis of \mathbf{R}^4 .
- (iii) Decide whether the vectors $\mathbf{u}_1 = (1, 1, 1, 0)$ and $\mathbf{u}_2 = (1, -1, 1, 2)$ are in S.
 - (iv) Let T be the span of \mathbf{u}_1 and \mathbf{u}_2 . What is the intersection $S \cap T$? [2 marks]
 - 14. Find the eigenvalues and eigenvectors of the matrix

$$A = \left(\begin{array}{rrr} -1 & 1 & -1 \\ 2 & 3 & -2 \\ 2 & 5 & -4 \end{array}\right)$$

(hint: one of the eigenvalues is -2). Hence write down a matrix C and a diagonal matrix D such that $C^{-1}AC = D$. [15 marks]