THE UNIVERSITY of LIVERPOOL

SECTION A

1. Let z = 1 + 2i. Find the real and imaginary parts of $\frac{1}{(\overline{z} - 2i)^2}$. [4 marks]

2. Let $z = 1 - i\sqrt{3}$. Express z in the form $re^{i\theta}$. (As usual, r > 0 and θ is real.) Indicate the position of z on a diagram. Use de Moivre's theorem to find the real and imaginary parts of z^9 . [6 marks]

3. Verify that $(3i-2)^2 = -5 - 12i$. By means of the quadratic formula, or completing the square, solve the quadratic equation $z^2 + (8-6i)z + 12 - 12i = 0.$ [4 marks]

4. Let A, B, C be three points with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ respectively. Write down the position vectors

p of P which is on AB, one-fifth of the distance from A to B; **m** of M which is the mid-point of CP.

Show that 4 MA + MB + 5 MC is the zero vector. [4 marks]

5. Let A = (-2, 0, 3), B = (-2, 2, 1) and C = (0, 4, 3).

(i) Find the vectors \vec{AB} , \vec{AC} and $\vec{AB} \times \vec{AC}$.

(

Verify that your vector $\vec{AB} \times \vec{AC}$ is perpendicular to the vectors \vec{AB} and \vec{AC} , stating your method for doing this. [4 marks]

(ii) Write down the area of the triangle ABC and find the length of the perpendicular from B to the side AC. (You need not evaluate any square roots occurring.) [3 marks]

(iii) Find an equation for the plane containing the triangle ABC. [3 marks]

6. Find the values of p, q, r such that the curve $y = p+qx+rx^2$ passes through the points (1, 1), (-1, 11) and (2, 2). [5 marks]

7. For each set of vectors (a) and (b) decide, giving reasons, whether the vectors are linearly independent and also whether they span \mathbb{R}^3 .

(a)
$$\mathbf{u} = (2, -8, 4), \ \mathbf{v} = (-3, 12, -6),$$

b) $\mathbf{u} = (2, -1, 5), \ \mathbf{v} = (-1, 6, 4), \ \mathbf{w} = (1, 2, -3).$

If the vectors in (a) or (b) are linearly *dependent*, find a non-trivial linear combination equalling the zero vector. [7 marks]

Paper Code MATH103 Sept-06 Page 2 of 4 CONTINUED

8. Find the determinants of the matrices A and B:

$$A = \begin{pmatrix} 0 & 4 & -1 \\ 1 & 2 & 5 \\ 3 & -6 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 & 0 \\ 8 & -1 & 0 \\ -11 & 7 & 4 \end{pmatrix}.$$

Use the rules for determinants, which should be clearly stated, to write down the determinants of AB^{-2} and B + 2I, where I is the 3×3 identity matrix.

[6 marks]

9. (i) Find the eigenvalues of the matrix $A = \begin{pmatrix} -2 & 3 \\ 3 & 6 \end{pmatrix}$. [2 marks]

(ii) For each eigenvalue, find an eigenvector of length 1. (You need not evaluate any square roots which arise.) [5 marks]

(iii) Write down an orthogonal matrix P and a diagonal matrix D such that $P^{\top}A P = D$. [2 marks]

SECTION B

10. Express the complex number a = -27i in the form $|a|e^{i\alpha}$. Find all the solutions of the equation $z^6 = a$ in the form $z = re^{i\theta}$ and indicate their positions on a diagram. Express also two of the solutions in exact cartesian form z = x + iy with no trigonometric functions involved.

[15 marks]

11. Let

$$A = \left(\begin{array}{ccc} 0 & -3 & \alpha - 2 \\ 1 & 2 & -1 \\ 2 & 7 - \alpha & 2 \end{array} \right).$$

(i) Show that A is invertible if and only if $\alpha \neq -1$ and $\alpha \neq 6$. [5 marks]

(ii) Find the inverse of A when $\alpha = 0$. [6 marks]

(iii) Find a condition which a, b and c must satisfy for the system of equations

to be consistent.

Paper Code MATH103

Page 3 of 4 CONTINUED

[4 marks]

12. Let L denote the line of intersection of the planes in \mathbb{R}^3 with equations

$$x + 4y - 2z = 3$$
 and $2x + 7y + 3z = -4$.

Let L' denote the line joining the points A = (1, -4, 2) and B = (3, -4, 3).

(i) Find in parametric form an expression for the general point of L.

[4 marks]

(ii) Write down the vector \vec{AB} and an expression for the general point of L'. [3 marks]

(iii) Determine the point at which L' meets the plane

$$x + y - z = -7.$$

[4 marks]

(iv) Decide whether or not L meets L'. [4 marks]

13. Vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ in \mathbf{R}^4 are defined by

$$\mathbf{v}_1 = (-2, 0, 9, 4), \ \mathbf{v}_2 = (1, 1, 6, 1), \ \mathbf{v}_3 = (3, -1, 0, -1), \ \mathbf{v}_4 = (1, 3, -3, -3).$$

(i) Show that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are linearly dependent. [6 marks]

(ii) Let S be the span of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. Find linearly independent vectors with the same span S. Extend these linearly independent vectors to a basis of \mathbf{R}^4 . [5 marks]

(iii) Decide whether the vector (1, -3, 0, 1) lies in S. [4 marks]

14. Find the eigenvalues and eigenvectors of the matrix

$$A = \left(\begin{array}{rrr} -2 & 1 & 0\\ 0 & 1 & -2\\ -3 & 1 & 1 \end{array}\right)$$

Hence write down a matrix C and a diagonal matrix D such that $C^{-1}AC = D$. [15 marks]