THE UNIVERSITY of LIVERPOOL

SECTION A

1. Let $z=1+2 i$. Find the real and imaginary parts of $\frac{1}{(\bar{z}-2 i)^{2}}$. [4 marks]
2. Let $z=1-i \sqrt{3}$. Express z in the form $r e^{i \theta}$. (As usual, $r>0$ and θ is real.) Indicate the position of z on a diagram. Use de Moivre's theorem to find the real and imaginary parts of z^{9}.
[6 marks]
3. Verify that $(3 i-2)^{2}=-5-12 i$. By means of the quadratic formula, or completing the square, solve the quadratic equation

$$
\begin{equation*}
z^{2}+(8-6 i) z+12-12 i=0 \tag{4marks}
\end{equation*}
$$

4. Let A, B, C be three points with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ respectively. Write down the position vectors
p of P which is on $A B$, one-fifth of the distance from A to B;
\mathbf{m} of M which is the mid-point of $C P$.
Show that $4 \overrightarrow{M A}+\overrightarrow{M B}+5 \overrightarrow{M C}$ is the zero vector.
5. Let $A=(-2,0,3), B=(-2,2,1)$ and $C=(0,4,3)$.
(i) Find the vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A B} \times \overrightarrow{A C}$.

Verify that your vector $\overrightarrow{A B} \times \overrightarrow{A C}$ is perpendicular to the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$, stating your method for doing this. [4 marks]
(ii) Write down the area of the triangle $A B C$ and find the length of the perpendicular from B to the side $A C$. (You need not evaluate any square roots occurring.)
(iii) Find an equation for the plane containing the triangle $A B C$. [3 marks]
6. Find the values of p, q, r such that the curve $y=p+q x+r x^{2}$ passes through the points $(1,1),(-1,11)$ and $(2,2)$.
[5 marks]
7. For each set of vectors (a) and (b) decide, giving reasons, whether the vectors are linearly independent and also whether they span \mathbf{R}^{3}.

$$
\text { (a) } \mathbf{u}=(2,-8,4), \mathbf{v}=(-3,12,-6),
$$

(b) $\mathbf{u}=(2,-1,5), \mathbf{v}=(-1,6,4), \mathbf{w}=(1,2,-3)$.

If the vectors in (a) or (b) are linearly dependent, find a non-trivial linear combination equalling the zero vector.
[7 marks]

THE UNIVERSITY of LIVERPOOL

8. Find the determinants of the matrices A and B :

$$
A=\left(\begin{array}{rrr}
0 & 4 & -1 \\
1 & 2 & 5 \\
3 & -6 & 2
\end{array}\right), \quad B=\left(\begin{array}{rrr}
2 & 0 & 0 \\
8 & -1 & 0 \\
-11 & 7 & 4
\end{array}\right)
$$

Use the rules for determinants, which should be clearly stated, to write down the determinants of $A B^{-2}$ and $B+2 I$, where I is the 3×3 identity matrix.
[6 marks]
9. (i) Find the eigenvalues of the matrix $A=\left(\begin{array}{rr}-2 & 3 \\ 3 & 6\end{array}\right)$. [2 marks]
(ii) For each eigenvalue, find an eigenvector of length 1. (You need not evaluate any square roots which arise.)
(iii) Write down an orthogonal matrix P and a diagonal matrix D such that $P^{\top} A P=D$.
[2 marks]

SECTION B

10. Express the complex number $a=-27 i$ in the form $|a| e^{i \alpha}$. Find all the solutions of the equation $z^{6}=a$ in the form $z=r e^{i \theta}$ and indicate their positions on a diagram. Express also two of the solutions in exact cartesian form $z=x+i y$ with no trigonometric functions involved.
[15 marks]
11. Let

$$
A=\left(\begin{array}{ccc}
0 & -3 & \alpha-2 \\
1 & 2 & -1 \\
2 & 7-\alpha & 2
\end{array}\right)
$$

(i) Show that A is invertible if and only if $\alpha \neq-1$ and $\alpha \neq 6$. [5 marks]
(ii) Find the inverse of A when $\alpha=0$.
(iii) Find a condition which a, b and c must satisfy for the system of equations

$$
\begin{aligned}
-3 y+4 z & =a \\
x+2 y-z & =b \\
2 x+y+2 z & =c
\end{aligned}
$$

to be consistent.

THE UNIVERSITY of LIVERPOOL

12. Let L denote the line of intersection of the planes in \mathbf{R}^{3} with equations

$$
x+4 y-2 z=3 \quad \text { and } \quad 2 x+7 y+3 z=-4
$$

Let L^{\prime} denote the line joining the points $A=(1,-4,2)$ and $B=(3,-4,3)$.
(i) Find in parametric form an expression for the general point of L.
[4 marks]
(ii) Write down the vector $\overrightarrow{A B}$ and an expression for the general point of
L^{\prime}.
(iii) Determine the point at which L^{\prime} meets the plane

$$
x+y-z=-7
$$

(iv) Decide whether or not L meets L^{\prime}.
[4 marks]
13. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ in \mathbf{R}^{4} are defined by

$$
\mathbf{v}_{1}=(-2,0,9,4), \mathbf{v}_{2}=(1,1,6,1), \mathbf{v}_{3}=(3,-1,0,-1), \mathbf{v}_{4}=(1,3,-3,-3)
$$

(i) Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly dependent.
(ii) Let S be the span of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$. Find linearly independent vectors with the same span S. Extend these linearly independent vectors to a basis of R^{4}.
(iii) Decide whether the vector $(1,-3,0,1)$ lies in S.
14. Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & 1 & -2 \\
-3 & 1 & 1
\end{array}\right)
$$

Hence write down a matrix C and a diagonal matrix D such that $C^{-1} A C=D$.
[15 marks]

