

THE UNIVERSITY of LIVERPOOL

SECTION A

1. Let $z=7+3 i$. Find the real and imaginary parts of $\frac{1}{(6-\bar{z})^{2}}$. [4 marks]
2. Let $z=2-2 i$. Express z in the form $r e^{i \theta}$. (As usual, $r>0$ and θ is real.) Indicate the position of z on a diagram. Use de Moivre's theorem to find the real and imaginary parts of z^{5}.
[6 marks]
3. Verify that $(8-5 i)^{2}=39-80 i$. By means of the quadratic formula, or completing the square, solve the quadratic equation

$$
z^{2}+(2-3 i) z-11+17 i=0
$$

[4 marks]
4. Let A, B, C be three points with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ respectively. Write down the position vectors
p of P which is on $A B$, three-fifth of the distance from A to B;
\mathbf{m} of M which is the mid-point of $C P$.
Show that $2 \overrightarrow{M A}+3 \overrightarrow{M B}+5 \overrightarrow{M C}$ is the zero vector.
5. Let $A=(2,1,-2), B=(0,3,-2)$ and $C=(4,3,0)$.
(i) Find the vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A B} \times \overrightarrow{A C}$.

Verify that your vector $\overrightarrow{A B} \times \overrightarrow{A C}$ is perpendicular to the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$, stating your method for doing this.
(ii) Write down the area of the triangle $A B C$ and find the length of the perpendicular from A to the side $B C$. (You need not evaluate any square roots occurring.)
(iii) Find an equation for the plane containing the triangle $A B C$. [3 marks]
6. Find the values of p, q, r such that the curve $y=p+q x+r x^{2}$ passes through the points $(1,-6),(-2,-15)$ and $(3,-20)$.
[5 marks]
7. For each set of vectors (a) and (b) decide, giving reasons, whether the vectors are linearly independent and also whether they $\operatorname{span} \mathbf{R}^{3}$.
(a) $\mathbf{u}=(-8,16,12), \mathbf{v}=(6,-12,-9)$,
(b) $\mathbf{u}=(2,-6,1), \mathbf{v}=(-4,8,-3), \mathbf{w}=(5,9,-7)$.

If the vectors in (a) or (b) are linearly dependent, find a non-trivial linear combination equalling the zero vector.
[7 marks]

THE UNIVERSITY of LIVERPOOL

8. Find the determinants of the matrices A and B :

$$
A=\left(\begin{array}{rrr}
0 & 2 & -1 \\
1 & 3 & -2 \\
-4 & -16 & 9
\end{array}\right), \quad B=\left(\begin{array}{rrr}
2 & 0 & 0 \\
-15 & 1 & 0 \\
-7 & 18 & -3
\end{array}\right)
$$

Use the rules for determinants, which should be clearly stated, to write down the determinants of $B^{2} A^{-3}$ and $B+2 I$, where I is the 3×3 identity matrix.
[6 marks]
9. (i) Find the eigenvalues of the matrix $A=\left(\begin{array}{rr}9 & 4 \\ 4 & -6\end{array}\right)$.
[2 marks]
(ii) For each eigenvalue, find an eigenvector of length 1. (You need not evaluate any square roots which arise.)
(iii) Write down an orthogonal matrix P and a diagonal matrix D such that $P^{\top} A P=D$.

SECTION B

10. (i) Express the complex numbers $b=e^{\pi i / 4}$ and $c=e^{\pi i / 3}$ in the cartesian form $x+i y$. Hence, considering the product $b c$, find $\cos \frac{7 \pi}{12}$ and $\sin \frac{7 \pi}{12}$ in the surd form.
(ii) Express the complex number $a=-4^{6} i$ in the form $|a| e^{i \alpha}$. Find all the solutions of the equation $z^{6}=a$ in the form $z=r e^{i \theta}$ and indicate their positions on a diagram. Making use of your result in (i) and of the diagram's symmetry, express all the solutions from the second quadrant in the exact cartesian form involving surds.
[15 marks]
11. Let

$$
A=\left(\begin{array}{ccc}
0 & \alpha-2 & -1 \\
2 & 3 & 1 \\
1 & -2 & \alpha+1
\end{array}\right)
$$

(i) Show that A is invertible if and only if $\alpha \neq-3 / 2$ and $\alpha \neq 3$. [5 marks]
(ii) Find the inverse of A when $\alpha=-1$.
[6 marks]
(iii) Find a condition which a, b and c must satisfy for the system of equations

$$
\begin{aligned}
y-z & =a \\
2 x+3 y+z & =b \\
x-2 y+4 z & =c
\end{aligned}
$$

to be consistent.

THE UNIVERSITY of LIVERPOOL

12. Let L denote the line of intersection of the planes in \mathbf{R}^{3} with equations

$$
x+3 y-4 z=-16 \quad \text { and } \quad 2 x+5 y-6 z=-25
$$

Let L^{\prime} denote the line joining the points $A=(7,-7,-3)$ and $B=(8,-6,-4)$.
(i) Find in parametric form an expression for the general point of L.
(ii) Write down the vector $\overrightarrow{A B}$ and an expression for the general point of
L^{\prime}.
[2 marks]
(iii) Determine the point P at which L^{\prime} meets the plane

$$
2 x+y+4 z=-1
$$

(iv) Find the distance from the point P to the line L.
(v) Find the distance between the lines L and L^{\prime}.
[4 marks]
13. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ in \mathbf{R}^{4} are defined by $\mathbf{v}_{1}=(2,0,4,1), \mathbf{v}_{2}=(1,-1,1,0), \mathbf{v}_{3}=(-3,2,-4,-1), \mathbf{v}_{4}=(4,-2,6,3)$.
(i) Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly dependent.
[6 marks]
(ii) Let S be the span of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$. Find linearly independent vectors with the same span S. Extend these linearly independent vectors to a basis of \mathbf{R}^{4}.
[4 marks]
(iii) Decide whether the vectors $\mathbf{u}_{1}=(2,-3,1,-1)$ and $\mathbf{u}_{2}=(-1,1,2,0)$ are in S.
(iv) Let T be the span of \mathbf{u}_{1} and \mathbf{u}_{2}. What is the intersection $S \cap T$?
[2 marks]
14. Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ccc}
4 & 1 & -4 \\
2 & 3 & 2 \\
-3 & 3 & 5
\end{array}\right)
$$

(hint: one of the eigenvalues is -1). Hence write down a matrix C and a diagonal matrix D such that $C^{-1} A C=D$.

