SECTION A

1. Let $z=5-2 i$. Find the real and imaginary parts of $\frac{1}{(\bar{z}-4)^{2}}$. [4 marks]
2. Let $z=-\sqrt{3}-i$. Express z in the form $r e^{i \theta}$. (As usual, $r>0$ and θ is real.) Indicate the position of z on a diagram. Use de Moivre's theorem to find the real and imaginary parts of z^{9}.
[6 marks]
3. Verify that $(2+i)^{2}=3+4 i$. By means of the quadratic formula, or completing the square, solve the quadratic equation

$$
z^{2}+(7 i-2) z-8 i-12=0
$$

[4 marks]
4. Let A, B, C be three points with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ respectively. Write down the position vectors
\mathbf{m} of M which is the mid-point of $A B$;
p of P which is on $C M$, one-quater of the distance from C to M.
Show that $\overrightarrow{P A}+\overrightarrow{P B}+6 \overrightarrow{P C}$ is the zero vector.
[4 marks]
5. Let $A=(-1,3,0), B=(-1,1,2)$ and $C=(1,2,5)$.
(i) Find the vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A B} \times \overrightarrow{A C}$.

Verify that your vector $\overrightarrow{A B} \times \overrightarrow{A C}$ is perpendicular to the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$, stating your method for doing this.
(ii) Write down the area of the triangle $A B C$ and find the length of the perpendicular from B to the side $A C$. (You need not evaluate any square roots occurring.)
[3 marks]
(iii) Find an equation for the plane containing the triangle $A B C$. [3 marks]
6. Find the values of p, q, r such that the curve $y=p+q x+r x^{2}$ passes through the points $(1,2),(-1,-12)$ and $(2,3)$.
[5 marks]
7. For each set of vectors (a) and (b) decide, giving reasons, whether the vectors are linearly independent and also whether they $\operatorname{span} \mathbf{R}^{3}$.

$$
\text { (a) } \mathbf{u}=(-3,9,6), \mathbf{v}=(-2,6,-4)
$$

(b) $\mathbf{u}=(-4,9,3), \mathbf{v}=(-1,3,4), \mathbf{w}=(2,-3,5)$.

If the vectors in (a) or (b) are linearly dependent, find a non-trivial linear combination equalling the zero vector.
8. Find the determinants of the matrices A and B :

$$
A=\left(\begin{array}{rrr}
-3 & 2 & 0 \\
-7 & 5 & 1 \\
1 & -4 & -8
\end{array}\right), \quad B=\left(\begin{array}{rrr}
3 & -7 & 8 \\
0 & 4 & -5 \\
0 & 0 & -2
\end{array}\right)
$$

Use the rules for determinants, which should be clearly stated, to write down the determinants of $A^{-3} B$ and $B-4 I$, where I is the 3×3 identity matrix.
[6 marks]
9. (i) Find the eigenvalues of the matrix $A=\left(\begin{array}{rr}6 & -2 \\ -2 & 9\end{array}\right)$. [2 marks]
(ii) For each eigenvalue, find an eigenvector of length 1. (You need not evaluate any square roots which arise.)
[5 marks]
(iii) Write down an orthogonal matrix P and a diagonal matrix D such that $P^{\top} A P=D$.
[2 marks]

SECTION B

10. Express the complex number $a=8 i$ in the form $|a| e^{i \alpha}$. Find all the solutions of the equation $z^{6}=a$ in the form $z=r e^{i \theta}$ and indicate their positions on a diagram. Express also two of the solutions in cartesian form $z=x+i y$ with no trigonometric functions involved.
[15 marks]
11. Let

$$
A=\left(\begin{array}{ccc}
1 & -3 & 1 \\
0 & 1 & \alpha+2 \\
3 & \alpha-7 & 4
\end{array}\right)
$$

(i) Show that A is invertible if and only if $\alpha \neq-1$ and $\alpha \neq-3$. [5 marks]
(ii) Find the inverse of A when $\alpha=0$.
(iii) Find a condition which a, b and c must satisfy for the system of equations

$$
\begin{aligned}
x-3 y+z & =a \\
y+z & =b \\
3 x-8 y+4 z & =c
\end{aligned}
$$

to be consistent.
12. Let L denote the line of intersection of the planes in \mathbf{R}^{3} with equations

$$
x-2 y+2 z=-1 \quad \text { and } \quad 3 x-7 y+4 z=5 .
$$

Let L^{\prime} denote the line joining the points $A=(2,-1,-1)$ and $B=(4,1,3)$.
(i) Find in parametric form an expression for the general point of L.
[4 marks]
(ii) Write down the vector $\overrightarrow{A B}$ and an expression for the general point of L^{\prime}.
(iii) Determine the point at which L^{\prime} meets the plane

$$
x-y+z=10 .
$$

(iv) Show that L meets L^{\prime} and find the point of intersection.
13. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ in \mathbf{R}^{4} are defined by

$$
\mathbf{v}_{1}=(1,-2,0,8), \mathbf{v}_{2}=(2,1,15,5), \mathbf{v}_{3}=(-2,3,-3,-6), \mathbf{v}_{4}=(1,0,6,2) .
$$

(i) Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly dependent.
(ii) Let S be the span of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$. Find linearly independent vectors with the same span S. Extend these linearly independent vectors to a basis of \mathbf{R}^{4}.
(iii) Decide whether the vector $(-4,0,-24,3)$ lies in S.
[4 marks]
14. Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ccc}
-2 & -5 & 3 \\
1 & 5 & -4 \\
1 & 7 & -6
\end{array}\right)
$$

Hence write down a matrix C and a diagonal matrix D such that $C^{-1} A C=D$.
[15 marks]

