SECTION A

1. Let z = 5 - 2i. Find the real and imaginary parts of $\frac{1}{(\overline{z} - 4)^2}$. [4 marks]

2. Let $z = -\sqrt{3} - i$. Express z in the form $re^{i\theta}$. (As usual, r > 0 and θ is real.) Indicate the position of z on a diagram. Use de Moivre's theorem to find the real and imaginary parts of z^9 . [6 marks]

3. Verify that $(2 + i)^2 = 3 + 4i$. By means of the quadratic formula, or completing the square, solve the quadratic equation

 $z^{2} + (7i - 2)z - 8i - 12 = 0.$ [4 marks]

4. Let A, B, C be three points with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ respectively. Write down the position vectors

m of M which is the mid-point of AB; **p** of P which is on CM, one-quater of the distance from C to M. Show that $\vec{PA} + \vec{PB} + 6\vec{PC}$ is the zero vector. [4 marks]

5. Let A = (-1, 3, 0), B = (-1, 1, 2) and C = (1, 2, 5).

(i) Find the vectors \vec{AB} , \vec{AC} and $\vec{AB} \times \vec{AC}$.

Verify that your vector $\vec{AB} \times \vec{AC}$ is perpendicular to the vectors \vec{AB} and \vec{AC} , stating your method for doing this. [4 marks]

(ii) Write down the area of the triangle ABC and find the length of the perpendicular from B to the side AC. (You need not evaluate any square roots occurring.) [3 marks]

(iii) Find an equation for the plane containing the triangle ABC. [3 marks]

6. Find the values of p, q, r such that the curve $y = p+qx+rx^2$ passes through the points (1, 2), (-1, -12) and (2, 3). [5 marks]

7. For each set of vectors (a) and (b) decide, giving reasons, whether the vectors are linearly independent and also whether they span \mathbb{R}^3 .

(a)
$$\mathbf{u} = (-3, 9, 6), \ \mathbf{v} = (-2, 6, -4),$$

(b) $\mathbf{u} = (-4, 9, 3), \ \mathbf{v} = (-1, 3, 4), \ \mathbf{w} = (2, -3, 5).$

If the vectors in (a) or (b) are linearly *dependent*, find a non-trivial linear combination equalling the zero vector. [7 marks] 8. Find the determinants of the matrices A and B:

$$A = \begin{pmatrix} -3 & 2 & 0 \\ -7 & 5 & 1 \\ 1 & -4 & -8 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & -7 & 8 \\ 0 & 4 & -5 \\ 0 & 0 & -2 \end{pmatrix}.$$

Use the rules for determinants, which should be clearly stated, to write down the determinants of $A^{-3}B$ and B - 4I, where I is the 3×3 identity matrix. [6 marks]

9. (i) Find the eigenvalues of the matrix $A = \begin{pmatrix} 6 & -2 \\ -2 & 9 \end{pmatrix}$. [2 marks]

(ii) For each eigenvalue, find an eigenvector of length 1. (You need not evaluate any square roots which arise.) [5 marks]
(iii) Write down an orthogonal matrix P and a diagonal matrix D such that

 $P^{\mathsf{T}} A P = D.$ [2 marks]

SECTION B

10. Express the complex number a = 8i in the form $|a|e^{i\alpha}$. Find all the solutions of the equation $z^6 = a$ in the form $z = re^{i\theta}$ and indicate their positions on a diagram. Express also two of the solutions in cartesian form z = x + iy with no trigonometric functions involved.

[15 marks]

11. Let

$$A = \begin{pmatrix} 1 & -3 & 1 \\ 0 & 1 & \alpha + 2 \\ 3 & \alpha - 7 & 4 \end{pmatrix}.$$

(i) Show that A is invertible if and only if $\alpha \neq -1$ and $\alpha \neq -3$. [5 marks]

(ii) Find the inverse of A when $\alpha = 0$. [6 marks]

(iii) Find a condition which a, b and c must satisfy for the system of equations

to be consistent.

[4 marks]

12. Let L denote the line of intersection of the planes in \mathbb{R}^3 with equations

$$x - 2y + 2z = -1$$
 and $3x - 7y + 4z = 5$.

Let L' denote the line joining the points A = (2, -1, -1) and B = (4, 1, 3).

(i) Find in parametric form an expression for the general point of L. [4 marks]

(ii) Write down the vector \overrightarrow{AB} and an expression for the general point of L'. [3 marks]

(iii) Determine the point at which L' meets the plane

$$x - y + z = 10.$$

[3 marks]

(iv) Show that L meets L' and find the point of intersection. [5 marks]

13. Vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ in \mathbf{R}^4 are defined by

 $\mathbf{v}_1 = (1, -2, 0, 8), \ \mathbf{v}_2 = (2, 1, 15, 5), \ \mathbf{v}_3 = (-2, 3, -3, -6), \ \mathbf{v}_4 = (1, 0, 6, 2).$

(i) Show that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are linearly dependent. [6 marks]

(ii) Let S be the span of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. Find linearly independent vectors with the same span S. Extend these linearly independent vectors to a basis of \mathbf{R}^4 . [5 marks]

(iii) Decide whether the vector (-4, 0, -24, 3) lies in S. [4 marks]

14. Find the eigenvalues and eigenvectors of the matrix

$$A = \left(\begin{array}{rrr} -2 & -5 & 3\\ 1 & 5 & -4\\ 1 & 7 & -6 \end{array}\right)$$

Hence write down a matrix C and a diagonal matrix D such that $C^{-1}AC = D$. [15 marks]