SECTION A

1. Let $z=5-i$. Find the real and imaginary parts of $\bar{z}+\frac{2}{z}$. [4 marks]
2. Let $z=-3+3 i$. Express z in the form $r e^{i \theta}$. (As usual, $r>0$ and θ is real.) Indicate the position of z on an Argand diagram. Use de Moivre's theorem to find the real and imaginary parts of z^{4}.
3. Verify that $(3-5 i)^{2}=-16-30 i$. By means of the quadratic formula, or completing the square, solve the quadratic equation

$$
\begin{equation*}
z^{2}+(1-3 i) z+(2+6 i)=0 \tag{5marks}
\end{equation*}
$$

4. Let A, B, C be three points with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ respectively. Let P be the centroid of the triangle $A B C$, which has position vector $\mathbf{p}=\frac{1}{3}(\mathbf{a}+\mathbf{b}+\mathbf{c})$. (You need not show this.)

Show that $\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}$ is the zero vector.
5. Let $A=(2,0,1), B=(1,2,-3)$ and $C=(-2,3,-4)$.
(i) Find the vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A B} \times \overrightarrow{A C}$. Verify that your vector $\overrightarrow{A B} \times \overrightarrow{A C}$ is perpendicular to $\overrightarrow{A B}$ and $\overrightarrow{A C}$. Write down the area of the triangle $A B C$.
[5 marks]
(ii) Find the cosine of the angle $B A C$. (You need not evaluate any square roots which arise.)
[2 marks]
(iii) Find an equation for the plane containing the triangle $A B C$.
[3 marks]
6. Find the values of p, q, r such that the curve $y=p+q x+r x^{2}$ passes through the points $(1,0),(-1,6)$ and $(2,12)$. [5 marks]
7. For each set of vectors (a) and (b) decide, giving reasons, whether the vectors are linearly independent and also whether they $\operatorname{span} \mathbf{R}^{3}$.
(a) $\mathbf{u}=(1,-5,-8), \mathbf{v}=(-2,10,-16)$,
(b) $\mathbf{u}=(1,-5,-8), \mathbf{v}=(-2,10,-16), \mathbf{w}=(-1,5,-56)$.

If the vectors in (a) or (b) are linearly dependent, find a non-trivial linear combination equalling the zero vector.
[7 marks]
8. Find the determinants of the matrices A and B :

$$
A=\left(\begin{array}{rrr}
1 & -2 & 4 \\
0 & 2 & 5 \\
1 & -2 & -1
\end{array}\right), \quad B=\left(\begin{array}{rrr}
2 & -2 & 0 \\
0 & 1 & -6 \\
0 & 0 & 4
\end{array}\right)
$$

Use the rules for determinants to write down the determinants of $A^{2} B^{-1}$ and $B-I$, where I is the 3×3 identity matrix.
9. Find the eigenvalues of the matrix $A=\left(\begin{array}{rr}1 & -2 \\ -3 & 0\end{array}\right) . \quad$ [3 marks]
10. Let

$$
B=\left(\begin{array}{rrr}
1 & 0 & 4 \\
1 & 2 & -2 \\
2 & 3 & -1
\end{array}\right)
$$

Find a nonzero vector $\mathbf{v}=(x, y, z)^{\top}$ satisfying $(B-3 I) \mathbf{v}=\mathbf{0}$, where I is the 3×3 identity matrix. Which real number λ is therefore an eigenvalue of B ? Write down a corresponding unit length eigenvector.
[5 marks]

SECTION B

11. Express the complex number $a=-4-4 \sqrt{3} i$ in the form $|a| e^{i \alpha}$. Find all the solutions of the equation $z^{3}=a$ in the form $z=r e^{i \theta}$ and indicate their positions clearly on an Argand diagram. For one of the solutions, express it in the cartesian form $z=x+i y$, correct to two decimal places.

Write down, with a brief explanation, one solution w to the equation $w^{4}=\bar{a}$, in cartesian form correct to two decimal places.
[15 marks]
12. Let

$$
A=\left(\begin{array}{rrc}
1 & \alpha & 2 \\
-3 & 3 & \alpha-1 \\
3 & -3 & 5
\end{array}\right) .
$$

(i) Show that A is invertible if and only if $\alpha \neq-1$ and $\alpha \neq-4$.
(ii) Find the inverse of A when $\alpha=0$.
(iii) Find a condition which a, b and c must satisfy for the system of equations

$$
\begin{array}{r}
x-y+2 z=a \\
-3 x+3 y-2 z=b \\
3 x-3 y+5 z=c
\end{array}
$$

to be consistent.
13. Let L denote the line of intersection of the planes in \mathbf{R}^{3} with equations

$$
x+y+z=5 \quad \text { and } \quad 2 x-y+4 z=8
$$

Let L^{\prime} denote the line joining the points $A=(1,2,3)$ and $B=(-9,6,7)$.
(i) Find in parametric form an expression for the general point of L. [4 marks]
(ii) Write down the vector $\overrightarrow{A B}$ and an expression for the general point of L^{\prime}.
(iii) Determine the point at which L^{\prime} meets the plane

$$
x+2 y+z=10
$$

(iv) Show that L meets L^{\prime} and find the point of intersection. $\begin{gathered}{[3 \text { marks] }} \\ {[5 \text { marks] }]}\end{gathered}$
14. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ in \mathbf{R}^{4} are defined by
$\mathbf{v}_{1}=(1,2,-3,-2), \mathbf{v}_{2}=(3,1,0,-1), \mathbf{v}_{3}=(-3,4,-9,-4), \mathbf{v}_{4}=(-1,3,-6,-3)$.
(i) Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly dependent.
[5 marks]
(ii) Let S be the span of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$. Find linearly independent vectors with the same span S. Extend these linearly independent vectors to a basis of \mathbf{R}^{4}.
(iii) Decide whether the vector $(-1,-7,12,2)$ lies in S.
[5 marks]

