All questions are similar to homework problems.

MATH102 Solutions May 2007
 Section A

1. The Taylor series of

$$
f(x)=x^{-1}=(2+(x-2))^{-1}=2^{-1}(1+(x-2) / 2)^{-1}
$$

is

$$
\frac{1}{2}-\frac{x-2}{4}+\frac{(x-2)^{2}}{8}-\frac{(x-2)^{3}}{16} \cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-2)^{n}}{2^{n+1}}
$$

This can also be worked out by computing all derivatives of f at $x=2$.
[3 marks]
a) When $x=1$ the series is convergent.
[1 mark]
b) When $x=4$ the series is not convergent.
[1 mark]
No explanation is required in a) or b).
$5=3+1+1$ marks

2(i) Separating the variables, we have

$$
\begin{gathered}
\int e^{y} d y=\int x d x \\
e^{y}=\frac{x^{2}}{2}+C
\end{gathered}
$$

Putting $x=1$ and $y=0$ gives

$$
1=\frac{1}{2}+C
$$

or $C=\frac{1}{2}$. So we obtain

$$
y=\ln \left(\frac{x^{2}+1}{2}\right)
$$

It is acceptable to leave the answer in the form $e^{y}=\left(x^{2}+1\right) / 2$. 2(ii) In standard form, the equation becomes

$$
\frac{d y}{d x}+\frac{2}{x} y=1
$$

Using the integrating factor method, the integrating factor is

$$
\exp \left(\int(2 / x) d x\right)=x^{2}
$$

So the equation becomes

$$
\frac{d}{d x}\left(y x^{2}\right)=x^{2}
$$

Integrating gives

$$
y x^{2}=\int x^{2} d x=\frac{x^{3}}{3}+C
$$

So the general solution is

$$
y=\frac{x}{3}+C x^{-2} .
$$

Putting $y(1)=0$ gives $C=-\frac{1}{3}$ and

$$
y=\frac{x}{3}-\frac{1}{3} x^{-2} .
$$

3 marks for (i) 5 marks for (ii).
[8 marks]
3. Try $y=e^{r x}$. Then

$$
r^{2}-4 r+3=0 \Rightarrow(r-3)(r-1)=0 \Rightarrow r=3 \text { or } r=1
$$

So the general solution is

$$
y=A e^{3 x}+B e^{x}
$$

[2 marks]
So $y^{\prime}=3 A e^{3 x}+B e^{x}$ and the initial conditions $y(0)=2, y^{\prime}(0)=1$ give

$$
A+B=2, \quad 3 A+B=1 \Rightarrow 2 A=-1, \quad B=2-A \Rightarrow A=-\frac{1}{2}, B=\frac{5}{2}
$$

So

$$
y=-\frac{1}{2} e^{3 x}+\frac{5}{2} e^{x} .
$$

[3 marks]
[$2+3=5$ marks]
4. We have

$$
\begin{array}{r}
\lim _{(x, y) \rightarrow(0,0), y=0} \frac{x y}{x^{2}+x y+y^{2}}=\lim _{x \rightarrow 0} \frac{0}{x^{2}}=0, \\
\lim _{(x, y) \rightarrow(0,0), y=x} \frac{x y}{x^{2}+x y+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}}{3 x^{2}}=\frac{1}{3} .
\end{array}
$$

So the limits along two different lines as $(x, y) \rightarrow(0,0)$ are different, and the overall limit does not exist.
[4 marks]
5.

$$
\frac{\partial f}{\partial x}=4 x^{3}-12 x y^{2}
$$

$$
\begin{gathered}
\frac{\partial f}{\partial y}=4 y^{3}-12 x^{2} y, \\
\frac{\partial^{2} f}{\partial x^{2}}=12 x^{2}-12 y^{2}, \\
\frac{\partial^{2} f}{\partial y \partial x}-24 x y, \\
\frac{\partial^{2} f}{\partial x \partial y}=-24 x y
\end{gathered}
$$

so that these last two are equal, and

$$
\frac{\partial^{2} f}{\partial y^{2}}=12 y^{2}-12 x^{2}
$$

So we also have

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

as required.[5 marks]
6. We have

$$
\begin{gathered}
\frac{\partial f}{\partial x}=2 x y+y z \cos (x y z), \\
\frac{\partial f}{\partial y}=x^{2}+x z \cos (x y z), \\
\frac{\partial f}{\partial z}=x y \cos (x y z)
\end{gathered}
$$

[3 marks]
By the Chain Rule,

$$
\frac{d F}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}
$$

So

$$
\begin{gathered}
\frac{d F}{d t}(0)=\frac{\partial f}{\partial x}(2,-1,0)+\frac{\partial f}{\partial y}(2,-1,0)-\frac{\partial f}{\partial z}(2,-1,0) \\
=-4+4-(-2)=2
\end{gathered}
$$

[2 marks]
$[3+2=5$ marks $]$
7. For

$$
f(x, y, z)=\frac{x y z}{x^{2}+y^{2}+z^{2}}
$$

we have

$$
\nabla f(x, y, z)=\left(\frac{y z}{x^{2}+y^{2}+z^{2}}-\frac{2 x^{2} y z}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right) \mathbf{i}
$$

$$
+\left(\frac{x z}{x^{2}+y^{2}+z^{2}}-\frac{2 x y^{2} z}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right) \mathbf{j}+\left(\frac{x y}{x^{2}+y^{2}+z^{2}}-\frac{2 x y z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right) \mathbf{k} .
$$

So

$$
\nabla f(1,1,1)=\left(\frac{1}{3}-\frac{2}{9}\right)(\mathbf{i}+\mathbf{j}+\mathbf{k})=\frac{1}{9}(\mathbf{i}+\mathbf{j}+\mathbf{k})
$$

3 marks
The derivative of f in the direction $\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}$ is

$$
\frac{\nabla f(1,1,1) \cdot(\mathbf{i}-2 \mathbf{j}-2 \mathbf{k})}{\sqrt{1+(-2)^{2}+(-2)^{2}}}=\frac{1}{9} \times \frac{-3}{3}=-\frac{1}{9}
$$

[2 marks]
[3+2 $=5$ marks.]
8. For

$$
f(x, y)=x^{2} y-2 x y+y^{2}-15 y
$$

we have

$$
\frac{\partial f}{\partial x}=2 x y-2 y \quad \frac{\partial f}{\partial y}=x^{2}-2 x+2 y-15
$$

[2 marks]
So at a stationary point,

$$
\begin{aligned}
& 2 y(x-1)=0=x^{2}-2 x+2 y-15 \\
& \Leftrightarrow(x, y)=(1,8) \text { or }(-3,0) \text { or }(5,0)
\end{aligned}
$$

[2 marks]

$$
A=\frac{\partial^{2} f}{\partial x^{2}}=2 y, B=\frac{\partial^{2} f}{\partial y \partial x}=2 x-2, C=\frac{\partial^{2} f}{\partial y^{2}}=2
$$

For $(x, y)=(1,8), A=16, B=0$ and $C=2$. So $A C-B^{2}=32>0 A>0$ and $(1,8)$ is a local minimum.

For $(x, y)=(-3,0)$, we have $A=0, B=-8, C=2$. So $A C-B^{2}<0$, and $(-3,0)$ is a saddle.

For $(x, y)=(5,0)$, we have $A=0, B=8, C=2$. So $A C-B^{2}<0$, and $(5,0)$ is again a saddle.
[4 marks]
$[2+2+4=8$ marks $]$
9. For

$$
f(x, y)=\frac{1}{x^{2}-y^{2}}
$$

we have

$$
\frac{\partial f}{\partial x}=\frac{-2 x}{\left(x^{2}-y^{2}\right)^{2}}, \quad \frac{\partial f}{\partial y}=\frac{2 y}{\left(x^{2}-y^{2}\right)^{2}}
$$

So

$$
f(2,1)=\frac{1}{3}, \quad \frac{\partial f}{\partial x}(2,1)=-\frac{4}{9}, \quad \frac{\partial f}{\partial y}(2,1)=\frac{2}{9}
$$

So the linear approximation is

$$
\frac{1}{3}-\frac{4}{9}(x-2)+\frac{2}{9}(y-1)
$$

[It would be acceptable to realise that

$$
\begin{aligned}
& f(x, y)=\left(3+4(x-2)+(x-2)^{2}-2(y-1)(y-1)^{2}\right)^{-1} \\
= & \frac{1}{3}\left(1+\frac{4}{3}(x-1)-\frac{2}{3}(y-1)+\frac{1}{3}(x-2)^{2}-\frac{1}{3}(y-1)^{2}\right)^{-1}
\end{aligned}
$$

and to expand out.]
[4 marks]
10. The domain of integration is the triangle as shown

This integral can be written as $\int_{0}^{1} \int_{0}^{x} d y d x$ or $\int_{0}^{1} \int_{y}^{1} d x d y$. So we have

$$
\begin{gathered}
\int_{0}^{1} \int_{1}^{y} e^{y / x} d x d y=\int_{0}^{1} \int_{0}^{x} e^{y / x} d x d y \\
=\int_{0}^{1}\left[x e^{y / x}\right]_{y=0}^{y=x} d x=\int_{0}^{1} x(e-1) d x \\
=\left[(e-1) \frac{x^{2}}{2}\right]_{0}^{1}=\frac{e-1}{2}
\end{gathered}
$$

[6 marks]

Section B

11. (i) The Taylor series of f at 0 is

$$
1-y+y^{2} \cdots=\sum_{n=0}^{\infty}(-1)^{n} y^{n}
$$

[3 marks]
Putting $y=x^{2}$, the Taylor series of g at 0 is

$$
\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

[2 marks]
Integrating, the Taylor series of $h(x)=\tan ^{-1}(x)$ at 0 is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}
$$

[2 marks]
(ii) We have

$$
f^{(n+1)}(y)=(-1)^{n+1}(n+1)!(1+y)^{-n-2}
$$

Now

$$
R_{n}(y, 0)=\frac{f^{(n+1)}(c)}{(n+1)!} y^{n+1}=(-1)^{n+1}(1+c)^{-n-2} y^{n+1}
$$

for some c between 0 and y. Since $c \geq 0,\left|(1+c)^{-n-2}\right| \leq 1$. So

$$
\left|R_{n}(y, 0) \leq\left|(-1)^{n+1} y^{n+1}\right| \leq y^{n+1}\right.
$$

[3 marks]
So

$$
\begin{aligned}
& \left|\int_{0}^{x} R_{n}\left(t^{2}, 0\right) d t\right| \leq \int_{0}^{x}\left|R_{n}\left(t^{2}, 0\right)\right| d t \\
& \quad \leq \int_{0}^{x} t^{2 n+2} d t=\frac{x^{2 n+3}}{2 n+3}
\end{aligned}
$$

[2 marks]
(iii)

$$
\begin{gathered}
h(1)=\tan ^{-1}(1)=\frac{\pi}{4} \\
P_{22}(1,0)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\frac{1}{15}+\frac{1}{17}-\frac{1}{19}+\frac{1}{21} \\
=\frac{2}{3}+\frac{2}{35}+\frac{2}{99}+\frac{2}{195}+\frac{2}{323}+\frac{1}{21} \\
=0.808078952 \ldots
\end{gathered}
$$

Meanwhile

$$
\frac{\pi}{4}=0.785398163 \ldots
$$

So the difference is <0.0247. This is $<1 / 23=0.0434$.. as required. [3 marks]
$3+2+2+3+2+3=15$ marks.
12. For the complementary solution in both cases, if we try $y=e^{r x}$ we need

$$
r^{2}-4 r-5=(r-5)(r+1)=0
$$

that is, $r=5$ or -1 . So the complementary solution is $A e^{5 x}+B e^{-x}$.
[3 marks]
(i) We try $y_{p}=C e^{x}$. Then $y_{p}^{\prime}=C e^{x}=y_{p}^{\prime \prime}$. So $y_{p}^{\prime \prime}-4 y_{p}^{\prime}-5 y_{p}=-8 C$. So $C=-\frac{1}{2}$ So the general solution is

$$
y=A e^{5 x}+B e^{-x}-\frac{1}{2} e^{x}
$$

[2 marks]
This gives

$$
y^{\prime}=5 A e^{5 x}-B e^{-x}-\frac{1}{2} e^{x}
$$

So putting $x=0$, the boundary conditions give
$A+B-\frac{1}{2}=1, \quad 5 A-B-\frac{1}{2}=-1 \Rightarrow 6 A=1, \quad B=\frac{3}{2}-A \Rightarrow A=\frac{1}{6}, \quad B=\frac{4}{3}$.
So the solution is

$$
y=\frac{1}{6} e^{5 x}+\frac{4}{3} e^{-x}-\frac{1}{2} e^{x}
$$

[3 marks]
(ii) We try $y_{p}=C x^{2}+D x+E$. Then $y_{p}^{\prime}(x)=2 C x+D$ and $y_{p}^{\prime \prime}=2 C$. So

$$
y_{p}^{\prime \prime}-4 y_{p}^{\prime}-5 y_{p}=(2 C-4 D-5 E)+x(-8 C-5 D)-5 C x^{2}=-5 x^{2}+2 x+5 .
$$

Comparing coefficients, we obtain

$$
-5 C=-5, \quad-8 C-5 D=2, \quad 2 C-4 D-5 E=5
$$

So

$$
C=1, \quad D=-2, \quad 10-5 E=5 \Rightarrow E=1
$$

So the general solution is

$$
A e^{5 x}+B e^{-x}+x^{2}-2 x+1
$$

[4 marks] This gives

$$
y^{\prime}(x)=5 A e^{5 x}-B e^{-x}+2 x-2 .
$$

So putting $x=0$, the boundary conditions give

$$
A+B+1=1, \quad 5 A-B-2=-1 \Rightarrow A=-B, \quad 6 A=1 \Rightarrow A=\frac{1}{6}, \quad B=-\frac{1}{6} .
$$

So

$$
y=\frac{1}{6} e^{5 x}-\frac{1}{6} e^{-x}+x^{2}-2 x+1
$$

[3 marks]
$[3+2+3+4+3=15$ marks $]$

13a)
We have

$$
\begin{gathered}
\nabla f=(y+1) \mathbf{i}+x \mathbf{j} \\
\nabla g=6 x \mathbf{i}+2 y \mathbf{j}
\end{gathered}
$$

[2 marks]
At a stationary point of f we have

$$
y+1=x=0 \Rightarrow(x, y)=(0,-1)
$$

This is in the set where $g(x, y)<3$. (The point is easily seen to be a saddle and so cannot be a maximum of minimum of f on the set where $g \leq 3$, but we shall not use this.)
[2 marks]
At a stationary point of f on $g=3$, we have $\nabla f=\lambda \nabla g$, that is,

$$
y+1=6 x \lambda, \quad x=2 y \lambda \Rightarrow y(y+1)-3 x^{2}=0 .
$$

On $g=3$, we have $3 x^{2}=3-y^{2}$, so

$$
2 y^{2}+y-3=(2 y+3)(y-1)=0 .
$$

So $y=1$ or $y=-\frac{3}{2}$. So the stationary points of f restricted to $g=3$ are

$$
(\pm \sqrt{2 / 3}, 1), \quad\left(\pm \frac{1}{2},-\frac{3}{2}\right)
$$

[6 marks]
Now we check the values of f at all these points. We have

$$
\begin{gathered}
f(0,-1)=0, \quad f(\sqrt{2 / 3}, 1)=2 \sqrt{2 / 3}, \quad f(-\sqrt{2 / 3}, 1)=-2 \sqrt{2 / 3}, \\
f\left(\frac{1}{2},-\frac{3}{2}\right)=-\frac{1}{4}, \quad f\left(-\frac{1}{2},-\frac{3}{2}\right)=\frac{1}{4} .
\end{gathered}
$$

So the minimum value is $-2 \sqrt{2 / 3}$ achieved as $(-\sqrt{2 / 3}, 1)$ and the maximum value is $2 \sqrt{2 / 3}$, achieved at $(\sqrt{2 / 3}, 1)$.
[5 marks]
$[2+2+6+5=15$ marks. $]$
14a). The region R is as shown.

The weight W is

$$
\int_{0}^{1} \int_{x}^{2 x} x d y d x=\int_{0}^{1} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{3}
$$

[5 marks]
14b) Then

$$
\begin{aligned}
& \bar{x}=\frac{1}{W} \int_{0}^{1} \int_{x}^{2 x} x^{2} d y d x \\
= & 3 \int_{0}^{1} x^{3} d x=3\left[\frac{x^{4}}{4}\right]_{0}^{1}=\frac{3}{4} .
\end{aligned}
$$

[5 marks]

$$
\begin{gathered}
\bar{y}=\frac{1}{W} \int_{0}^{1} \int_{x}^{2 x} x y d y d x \\
=3 \int_{0}^{1} x\left[\frac{y^{2}}{2}\right]_{x}^{2 x} d x=\frac{9}{2} \int_{0}^{1} x^{3} d x \\
=\frac{9}{2}\left[\frac{x^{4}}{4}\right]_{0}^{1}=\frac{9}{8}
\end{gathered}
$$

So

$$
(\bar{x}, \bar{y})=\left(\frac{3}{4}, \frac{9}{8}\right) .
$$

[5 marks]
[$3 \times 5=15$ marks. $]$

