MATH101: JANUARY 2002 EXAMINATION

Instructionstocandidates

AnswerallofsectionAandTHREEquestionsfromsection B.Themarksshownagainstquestions, or partsofquestions, indicate their relative weights. Sect ionAcarries 55% of the total marks.

SECTIONA

1. Writedownthenaturaldomainandtherangeofeachofthef ollowingfunctionsandsketchtheir graphs:

(i)
$$y = |x+2|$$
 (ii) $y = 1/(2x-1)^2$. (4marks)

2. Findthegeneralsolutionof

$$\sin \theta = \sqrt{3}/2. \tag{4marks}$$

3. If

$$f(x) = \frac{1+x}{1-2x},$$

find the corresponding inverse function $f^{-1}(x)$. Verify that

$$f(f^{-1}(x)) = x. \tag{5marks}$$

4. Findthefollowinglimits

(i)
$$\lim_{x \to 2} \frac{x^4 + x + 5}{x + 2}$$
 (ii) $\lim_{x \to -1} \frac{x^7 + 1}{x + 1}$ (iii) $\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}$ (6marks)

5. Find

$$\frac{d}{dx}(2x^2 - x)$$

by differentiation from first principles.

6. Differentiatethefollowingidentifyinganyrulesofdiffer entiationthatyouuse (i) $y = x^3 e^{3x}$ (ii) $y = \frac{1+x}{1+x^2}$ (iii) $y = \sin(\tan(3x))$. (6marks)

7. Use
implicit differentiation to find the value of the derivative of

$$x^2y^2 + 3\sin x - 5y = -5$$

at the point (0,1). Find the equation of the tangen to the curve at this point. (6 marks)

8. Findandclassifythelocalextremaofthefunct ion $f(x) = 2x^3 + \frac{1}{2}x^2 - x.$ (5marks)

(4marks)

9. Evaluatethefollowingdefiniteintegrals

(i)
$$\int_0^1 x(x^2+1)^{10} dx$$
 (ii) $\int_0^{\pi/4} x \sin x dx$. (6marks)

- 10. The curve Chasequation $y = xe^x$, $0 \le x \le 1$. Find the volume of the solid of revolution genera ted when the finite region enclosed by C, the line x = 1 and the x-axis is rotated through 2π about the x-axis. (5 marks)
- 11. UseD'Alembert'sratiotesttodeterminewheth erornotthefollowinginfiniteseriesconverges

$$\sum_{n=0}^{\infty} \frac{n^{100}}{2^n}.$$
 (4marks)

SECTIONB

12. Let

$$f(x) = \frac{x^2 + 1}{x^2 - 4x + 3}.$$

Findconstants A, B, and Csuchthat

$$f(x) = A + \frac{B}{x-1} + \frac{C}{x-3}.$$

Findintervalsof xonwhichthefunctionis(i)increasing,(ii)decreasing,(iii)concaveupand(iv)convexup.Locateanyzeros,asymptotes,extremaandinflectionpoints.Classifytheextrema.Sketchthegraph.(15marks)

13. Derivetheformula

$$f(a) + f'(a)(x - a)$$

for the linear approximation to the function f(x) = a. Hence, or otherwise, show that, if x_0 is an approximation to a solution of the equation f(x) = a, then

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

maygiveabetterapproximation.

Bysketchinggraphs of $y = \sin 2x$ and y = x, demonstrate that the equation

$$\sin 2x - x = 0$$

hasoneandonlyonepositivesolution. Taking $k_0 =$, use the above method repeatedly to find an approximation to the above solution correct to 6 de cimal places. (15 marks)

14 Writedownthedefinitions of cosh x and sinh x interms of e^x and e^{-x} . Hencefind the values of x which satisfy the equation

7
$$\cosh x$$
-3 $\sinh x$ =7.

Thehyperbolic tangent function is defined by tanh $x=\sinh x/\cosh x$. Show that its inverse function $\tanh^{-1} x$ can be represented by the formula:

$$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Usethisformulatoshowthat

(i)
$$\tanh^{-1}(x) + \tanh^{-1}(-x) = 0$$
 (ii) $\frac{d}{dx} \left(\tanh^{-1} x \right) = \frac{1}{1 - x^2}$. (15marks)

15 Obtainapproximatevaluesfortheintegral

$$\int_0^1 x\sqrt{1-x^2}\,dx$$

using(i)thetrapezoidalruleand(ii)Simpson'sr equalpartsineachcase.Giveyouranswerscorrect accuratemethodbyevaluatingtheintegraldirectly ulewiththeinterval[0,1]subdividedintoeight tofivedecimalplaces.Verifythat(ii)isthemo re andcomparingtheresults. (15marks)

16 (i)Findthefollowingindefiniteintegrals

(a)
$$\int e^{2x} \sin x \, dx$$
 (b) $\int \frac{x^3}{\sqrt{4-x^2}} \, dx$, $(-2 < x < 2)$.

(ii)Findthearclengthofthecurve

 $y = x^{3/2}$ from x = 1 to x = 2 correctto3decimalplaces.

(15marks)