SECTION A

1. Given that $z=3+2 i$, write down the complex conjugate \bar{z}.

$$
\text { Hence show that } \quad \frac{\bar{z}}{z}+\frac{z}{\bar{z}}=\frac{10}{13} \text {. }
$$

2. Express the complex number $1+i$ in polar form. Hence, by the use of De Moivre's theorem or otherwise, evaluate $(1+i)^{6}$.
Draw a diagram of the complex plane identifying clearly all the points corresponding to the complex numbers z which satisfy the equation

$$
z^{4}=1+i .
$$

[7 marks]
3. Sketch the graph of $y=7+\frac{3}{x}$. Hence or otherwise find the range(s) of values of x which satisfy the inequality: $\left|7+\frac{3}{x}\right|>10$.
4. Find $\frac{d}{d x}\left(3 x^{2}-4\right) \quad$ by differentiation from first principles using a limiting process.
5. Evaluate each of the following limits by any valid method:
(i) $\operatorname{Lim}_{x \rightarrow \infty} \frac{3 x^{3}+4}{(x+1)(2 x+1)(3 x+1)}$,
(ii) $\operatorname{Lim}_{x \rightarrow 1} \frac{7 x^{3}-17 x^{2}+13 x-3}{3 x^{3}-7 x^{2}+5 x-1}$.
[6 marks]
6. Find the derivatives of the following functions with respect to x using the rules of differentiation. Simplify your answers as far as possible.
(i) $\left(1+x^{3}\right) \ln \left(1+x^{3}\right)$,
(ii) $\frac{\cos x}{1+\sin x}$.
7. Evaluate the following definite integrals:

$$
\text { (i) } \int_{0}^{1} x^{2} e^{x} d x, \quad \text { (ii) } \quad \int_{2}^{3} \frac{d x}{x(1-x)}
$$

8. Given that $x^{3}+3 x y+y^{3}=5$, where y is a function of x, find the value of $\frac{d y}{d x}$ when $x=y=1$.
9. Draw a clear diagram showing the region A enclosed between the y-axis and the curves $y=x^{2}, \quad y=2-x^{2}$ for $x \geq 0$.
Deduce that the area of A is $4 / 3$.
The region A is now rotated through 360° about the x-axis. Show that the volume of the solid generated is $8 \pi / 3$.
10. Use D'Alembert's ratio test to determine whether or not the following infinite series converges.

$$
\sum_{n=1}^{\infty} \frac{5^{n}(n+1)!(n+2)!(n+3)!}{(3 n)!}
$$

SECTION B

11. Write down the binomial expansion for $(\cos \theta+i \sin \theta)^{5}$. Use De Moivre's theorem to deduce that:

$$
\begin{aligned}
\cos (5 \theta) & =\left(16 \cos ^{4} \theta-20 \cos ^{2} \theta+5\right) \cos \theta, \quad \text { and } \\
\sin (5 \theta) & =\left(16 \cos ^{4} \theta-12 \cos ^{2} \theta+1\right) \sin \theta .
\end{aligned}
$$

Hence or otherwise obtain an expression for $\cos (6 \theta)$ in terms of powers of $\cos \theta$. Check the validity of your result by substituting $\theta=\pi / 3$.
12. (i) The function f is defined by $f(x)=\frac{\alpha x+3}{4 x-7}$ for $x \neq 7 / 4$, where α is a constant parameter. Find $f^{-1}(x)$, where f^{-1} is the inverse function of f. Hence determine the value of α which makes $f^{-1}(x)=f(x)$ for all values of $x \neq 7 / 4$.
(ii) Given that $x=a$ satisfies the equation $f(x)=x$, verify that $x=a$ also satisfies the equation $f[f(x)]=x$.

The function f is defined by $f(x)=x(x-3)$. Obtain the solutions of the equation $f(x)=x$. Verify that $\quad f[f(x)]=x^{4}-6 x^{3}+6 x^{2}+9 x$.

Hence find all four values of x which satisfy the equation $f[f(x)]=x$.
[10 marks]
13. Use the substitution $u=x^{2}$ to find the real values of x which satisfy the equation $x^{4}-3 x^{2}-4=0$. Hence determine the stationary points of the function f defined by: $f(x)=x^{5}-5 x^{3}-20 x+38$.
Find $f^{\prime \prime}(x)$ and deduce how the concavity of the graph $y=f(x)$ will change as x increases from large negative to large positive values.
Now draw the graph of $y=f(x)$ carefully, identifying turning points and all the points of inflexion. Note that for full credit all mathematical working must be shown in detail.

Verify from your graph that the equation $f(x)=0$ has a root $x=\alpha$ where $1<\alpha<2$. Use the Newton-Raphson method to evaluate α : starting with $x_{0}=1.0$, compute x_{n} where n is sufficiently large for α to be correct to seven decimal places. State $f\left(x_{n}\right)$ to illustrate the accuracy of your result.
14. Obtain approximate values for the integral: $\int_{0}^{1} x \sin \left(\pi x^{2}\right) d x$ using (i) the trapezoidal rule and (ii) Simpson's rule with the interval $[0,1]$ subdivided into ten equal parts in each case, working throughout with at least seven significant digits. Verify that (ii) is the more accurate method by evaluating the integral directly and comparing the results.
15. (i) Write down the definition of $\cosh x$ in terms of e^{x} and e^{-x}. Verify that $2 \cosh ^{2} x=1+\cosh (2 x)$ and hence obtain an expression for $\cosh ^{4} x$ involving $\cosh (2 x)$ and $\cosh (4 x)$. Deduce that:

$$
32 \int_{0}^{1} \cosh ^{4} x d x=12+8 \sinh (2)+\sinh (4)
$$

(ii) The firm Gasflo Plc. (motto: "No Gassle!") has a pumping station S situated on the edge of a circular lake of radius r with its centre at the point O. The firm's managing director Sid would like gas to be piped from S to his luxury mansion, which is on the other side of the lake at a point B diametrically opposite S.
The plan is to lay a straight pipe underwater from S to a point A on the edge of the lake, and then on around the edge to B with a pipe buried in a trench on land.

Assuming that the cost per unit length of laying a pipe underwater is twice that on land, show that the total cost incurred is proportional to:
$C(\theta)=4 r \cos \theta+2 r \theta, \quad$ where the angle $A O B=2 \theta$ and $\quad 0 \leq \theta \leq \pi / 2$.
Hence, by sketching the graph of $C(\theta)$ or otherwise, find the route chosen by Gasflo to minimize the cost of supplying gas to Sid's mansion.

MATH101: JANUARY 2000 EXAMINATION

You may attempt all questions.
All answers to Section A and the best THREE answers
from Section B will be taken into account.
The marks shown indicate the relative weights of the questions.
Section A carries 55\% of the available marks.

