THE UNIVERSITY of LIVERPOOL

SECTION A

1. Evaluate the following indefinite integrals
(i) $\int \frac{3}{2} x^{5} d x \quad[2$ marks $]$
(ii) $\int \sqrt{3 x-7} d x \quad[2$ marks]
(iii) $\int \cos (4 x+2) d x \quad[3$ marks]
(iv) $\int e^{-5 x} d x \quad[3$ marks]
2. Evaluate the following definite integrals
(i) $\int_{2}^{3} \frac{d x}{2 x-3} \quad[3$ marks]
(ii) $\int_{0}^{1} x\left(1-3 x^{2}\right) d x[2$ marks $]$
(iii) $\int_{\pi / 5}^{2 \pi} \sin (5 x) d x \quad[3$ marks]
(iv) $\int_{0}^{2}(-x+1)^{6} d x$ [2 marks]
3. Using partial fractions, the following rational functions can be written as

$$
\begin{aligned}
& \text { (a) } \frac{2}{(x-3)(x+1)}=\frac{A}{x-3}+\frac{B}{x+1} \\
& \text { (b) } \frac{x^{2}-1}{x\left(x^{2}+1\right)}=\frac{C}{x}+\frac{D x+E}{x^{2}+1}
\end{aligned}
$$

Compute the constants A, B, C, D, E.

Hence evaluate the following integrals:

$$
\begin{aligned}
& \text { (i) } \int \frac{2}{(x-3)(x+1)} d x \quad[2 \text { marks }] \\
& \text { (ii) } \int_{1}^{2} \frac{x^{2}-1}{x\left(x^{2}+1\right)} d x \quad[3 \text { marks }]
\end{aligned}
$$

4. Use integration by parts to show that

$$
\int_{0}^{\pi / 2} x \sin \left(\frac{x}{2}\right) d x=(4-\pi) \frac{1}{2} \sqrt{2}
$$

THE UNIVERSITY of LIVERPOOL

5. Solve the following first order differential equations.

Hint: try to use separation of variables.
(i) $\frac{d y}{d x}=3 x^{2} \quad[3 \mathrm{marks}]$
(ii) $\frac{d y}{d x}=4 y^{2}[3$ marks $]$

For equation (ii) find the particular solution where $y=1$ when $x=\frac{1}{2}$. [2 marks]
6. Solve the following second order differential equations

$$
\begin{aligned}
& \text { (i) } \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-8 y=0 \quad[4 \text { marks }] \\
& \text { (ii) } \frac{d^{2} y}{d x^{2}}+36 y=0 \quad[4 \mathrm{marks}]
\end{aligned}
$$

For equation (ii), find the particular solution where $y=1$ and $\frac{d y}{d x}=1$ when $x=0$. [2 marks]

SECTION B

7. A ship of mass M looses power while sailing with initial speed v_{0}. Assume that the resisting force of the water is proportional to the speed v of the ship.

Show that the velocity of the ship is governed by the differential equation

$$
M \frac{d v}{d t}=-k v
$$

where t is time, $v=v(t)$ is the speed of the ship at time t, and $k>0$ is a positive constant.

Solve the above differential equation and find the particular solution where the velocity is v_{0} at time $t=0$.
[4 marks]
Given that the mass of the ship is $M=65,000,000 \mathrm{~kg}$, that the initial velocity is $v_{0}=8 \frac{\mathrm{~m}}{\mathrm{~s}}$, and given that $k=5,000 \frac{\mathrm{~kg}}{\mathrm{~s}}$, how long will it take for the speed of the ship to drop to $v_{1}=1 \frac{m}{s}$?

THE UNIVERSITY of LIVERPOOL

8. (i) Solve the following second order differential equation

$$
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=0
$$

and find the particular solution where $y=e^{-4}$ and $\frac{d y}{d x}=e^{-4}$ when $x=1$.
[8 marks]
(ii) Evaluate the following integral

$$
\int_{0}^{\pi / 4} \sin ^{3}(2 x) \cos (2 x) d x
$$

Hint: You may use the substitution $u=\sin (2 x)$.
[7 marks]
9. A train starts at rest at point A. With uniform acceleration $0.25 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ it reaches its maximal speed $v_{\max }$ at point B after 2 minutes.

Show that its maximal speed is $v_{\max }=30 \frac{\mathrm{~m}}{\mathrm{~s}}$. [3 marks]
Express $v_{\text {max }}$ in $\frac{k m}{h}$.
Compute the distance between points A and B.
After passing point B, the train proceeds with maximal speed $v_{\max }=30 \frac{\mathrm{~m}}{\mathrm{~s}}$ for 10 minutes until it reaches point C. What is the distance between points B and C ?
[2 marks]
From point C the train decelerates uniformly with $0.6 \frac{m}{s^{2}}$ until it stops at point D. How long does it take the train to get from C to D ?
[3 marks] What is the distance between C and D, and, hence, what is the total distance the train has travelled?
[4 marks]

THE UNIVERSITY of LIVERPOOL

10. A simple pendulum makes an angle of θ with the vertical. Its motion is approximately described by the differential equation

$$
\frac{d^{2} \theta}{d t^{2}}+k^{2} \theta=0
$$

where t is time and $k^{2}=25$. Given that $\theta=1$ and $\frac{d \theta}{d t}=5$ at $t=0$, solve the above differential equation.

Show by substitution that

$$
\theta(t)=\sqrt{2} \sin \left(5 t+\frac{\pi}{4}\right)
$$

solves both the above differential equation and the initial condition. [5 marks]

Plot this function on a graph, where the horizontal axis is t and the vertical axis is θ, such that you display at least one full period of the function. Specify explicitly the period of the function.
[5 marks]

